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Review



Value Functions
> A'R(st)

- State Value Function
So :S]
t=0

= R(S) + 7)_P(SIs.m(s)) V7 (S")

Vi(s) = ET

- Action Value Function

> A'R(st)

t=0
= R(s) + 7Y _P(s'|s,a)V7(s')

Q"(s,a) = ET

So=S, 00:(]]
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Optimality

- Goal

Find the optimal policy given the environment that the
agentisin.

- Planning

If reward function and transition probabilities are known.

- Reinforcement Learning
If reward function and transition probabilities are
unknown.
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Optimality

79

There exists at most one policyjr_* such that V™'(s) > V7 (s) for
all policies = and states s of the MDP.

True (A) or False (B)?
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Optimality

Optimal value functions, Q*(s,a) and V*(s) are unique and all
optimal policies share the same value functions.

Trle (A) or False (B)?
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Optimality

- Theorem

There exists at least one policy 7* (and perhaps many) such
that V7 (s) > V7(s) for all policies = and states s of the MDP.

- Notation
Vi(s) = VT (s)
Q*(s,a) = Q" (s,q)

These optimal value functions are unique.
(All optimal policies share the same value functions.)
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Optimality

We can get the optimal policy #* from the optimal value
function V*(s) but not from the optimal action value function
Q*(s,a).

True (A) or False (B)?
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Relations at optimality

- From the optimal action value function:
V¥(s) = max[Q*(s,q)]
m*(s) = argmax [Q*(S7 a)]
- From the optimal state value function:

Q*(s,a) = +wz (s'ls, a)V*(s")

m*(s) = arg’max[ + ’yz (s'[s, a)V*(s")
- Why are these relations useful?

Sometimes it can be easier to estimate Q*(s, a) or V*(s)
(which are continuous) than to learn 7*(s) (which is discrete).
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Planning in MDPs

Given a complete model of the agent and its environment
as a Markov decision process, namely

MDP = {S,A,P(s'ls,a),R(S), 7},

how can we efficiently compute (i.e., in time polynomial in the
number of states) any of the following:

1. an optimal policy 7*(s)?
2. the optimal state value function V*(s)?

3. the optimal action value function Q*(s,a)?

This is the problem of planning in MDPS.‘
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Policy Based




Algorithms

1. Policy evaluation

How to compute V7™(s) for some fixed policy 7?

2. Policy improvement

How to compute a policy 7’ such that V™' (s) > V7(s)?

3. Policy iteration

How to compute an optimal policy 7*(s)?
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Policy evaluation

- How to compute the state value function?

Vi(s) = EF [me(st)

t=0

SO_S] Rls,S o)

- Bellman equation:
VT(s) = R(s) + 7D P(sls, m(s))V"(s)
S/

- Solve linear system: There are n equations for n
unknowns (where s =1,2,...,n).
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Solving the linear system (con't)

- Solution

R = [l - ’yP”} VT = VT = (- ’yP’r)_1 R
~—_———
- Complexity matrix inverse

It takes O(n?) operations to solve this system of equations.
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Policy improvement

- Problem statement

Given a policy w and its state value function V7(s),
how to compute a policy 7’ such that

!

VT(s) > V™(s) forall states s?

- Definition

Given the action value function Q™(s, a) for policy =, we
define the greedy policy 7’ by

7'(s) = argmax [Q’r(s,a)].

acktow NS T
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Greedy policies

- In terms of the state value function:

7'(s) = argmax Q”(S,a)}
= arg(gnax —I—WZ (s'|s,a) V™ (s )}
= argmax _ZS, (s']s,a) V(s )}

- Test your understanding:

7'(s) = w(s) for some s € §? not necessarily
7'(s) # w(s) for some s € §? not necessarily

Q™(s,7'(s)) > Q"(s,n(s)) foralls e S?  TRUE
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Policy improvement
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Policy improvement

- Greedy policy:
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Policy improvement

- Greedy policy:

7'(s) = argmax Q"(s,a)
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Policy improvement

- Greedy policy:

7'(s) = argmax Q"(s,a)

- Theorem:
The greedy policy 7/(s) = arg maxq Q™ (S, a) improves
everywhere on the policy « from which it was derived:
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Policy improvement

- Greedy policy:
7'(s) = argmax Q"(s,a)
- Theorem:

The greedy policy 7/(s) = arg maxq Q™ (S, a) improves
everywhere on the policy = from which it was derived:

V™ (s) >V7(s) forallstatesseS
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Policy improvement

- Greedy policy:
7'(s) = argmax Q"(s,a)

- Theorem:
The greedy policy 7/(s) = arg maxq Q™ (S, a) improves
everywhere on the policy = from which it was derived:

V™ (s) >V7(s) forallstatesseS

« Intuition:

23 /152



Policy improvement

- Greedy policy:
7'(s) = argmax Q"(s,a)
- Theorem:

The greedy policy 7/(s) = arg maxq Q™ (S, a) improves
everywhere on the policy = from which it was derived:

V™ (s) >V7(s) forallstatesseS

« Intuition:

If it's better to choose action a in state s before following
m, then it's always better to make this choice.
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Policy improvement

- Greedy policy:

7'(s) = argmax Q"(s,a)

- Theorem:
The greedy policy 7/(s) = arg maxq Q™ (S, a) improves
everywhere on the policy = from which it was derived:

V™ (s) >V7(s) forallstatesseS

- Intuition:
If it's better to choose action a in state s before following
m, then it's always better to make this choice.

- Proof idea:
We'll prove a key inequality for one-step deviations from m,

then we'll extend this inequality by an iterative argument.
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Proof — 1. Deriving the inequality
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Proof — 1. Deriving the inequality

- Comparing value functions:
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Proof — 1. Deriving the inequality

- Comparing value functions:el o TN thak romes
VTI'(S) _ QW(S,T['(S)) %“'O’VV\ ’n—
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Proof — 1. Deriving the inequality

- Comparing value functions:

Vi(s) = Q7(s,m(s))
< mg]xQ"(S,a)
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Proof — 1. Deriving the inequality

- Comparing value functions:
Vi(s) = Q%(s,7(s))
< mg]xQ"(S,a)

= Q"(s,7(9))

—
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Proof — 1. Deriving the inequality

- Comparing value functions:

Vi(s) = Q7(s,m(s))
< mg]xQ"(S,a)

= (s )s)) T
— R(s)+1 3 P(s]s. 7 (s)EXs))
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Proof — 1. Deriving the inequality

- Comparing value functions:

Vi(s) = Q7(s,m(s))
< mg]xQ"(S,a)

= Q7(s,7(s))
= R(s)+7 ) P(s'Is,w(s)V7(s")

- Combining these steps:
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Proof — 1. Deriving the inequality

- Comparing value functions:
Vi(s) = Q%(s,7(s))
< mg]xQ"(S,a)
= O”(S '(s))
= +72 (s|s, ' (s))V™(s")

- Combining these steps:

Vi(s) < R(s) + 3 P ls () V)
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Proof — 1. Deriving the inequality

- Comparing value functions:
Vi(s) = Q%(s,7(s))
< mg]xQ"(S,a)
= O”(S '(s))
= +72 (s|s, 7' (s))V™(s")

- Combining these steps:

VT(s) < R(s)+7 Y _P(s|s, 7 (s))V7(s)

- Intuition:
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Proof — 1. Deriving the inequality

- Comparing value functions:
Vi(s) = Q%(s,7(s))
< mg]xQ"(S,a)
= Q"(s,7(s))
= R(S)+7 Y P(Sls,w(s))V7(s")
>

- Combining these steps:

VT(s) < R(s)+7 Y _P(s|s, 7 (s))V7(s)

- Intuition:

It is better to take one step under 7/, then revert to ,
than to always follow .
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Proof — 2. Leveraging the inequality
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Proof — 2. Leveraging the inequality

- One-step inequality:
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Proof — 2. Leveraging the inequality

- One-step inequality:
VT(s) < R(S)+7 ) _P(s'ls, ' (s))V"(s)

What happens if we plug this inequality into itself?
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Proof — 2. Leveraging the inequality

- One-step inequality:
VT(s) < R(S)+7 ) _P(s'ls, ' (s))V"(s)

What happens if we plug this inequality into itself?
Then we obtain ...
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Proof — 2. Leveraging the inequality

- One-step inequality:
VT(s) < R(S)+7 ) _P(s'ls, ' (s))V"(s)

What happens if we plug this inequality into itself?
Then we obtain ...

- Two-step inequality:

40 /152



Proof — 2. Leveraging the inequality

- One-step inequality:

What happens if we plug this inequality into itself?
Then we obtain ...

- Two-step inequality: o 7
(

Vi(s) < R(s)+7§:P(s Is, 7' (s)) Li(s ) + 1 Z P(s"|s :ﬁ))w j
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Proof — 2. Leveraging the inequality

- One-step inequality:
VT(s) < R(S)+7 ) _P(s'ls, ' (s))V"(s)

What happens if we plug this inequality into itself?
Then we obtain ...

- Two-step inequality:

V() < R(s)+7 ) _P(S'Is,m(s)) |R(s) + 7 D> P(s"[s". 7' (s)V7(s")

- Intuition:
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Proof — 2. Leveraging the inequality

- One-step inequality:
VT(s) < R(S)+7 ) _P(s'ls, ' (s))V"(s)

What happens if we plug this inequality into itself?
Then we obtain ...

- Two-step inequality:

V() < R(s)+7 ) _P(S'Is,m(s)) |R(s) + 7 D> P(s"[s". 7' (s)V7(s")

- Intuition:

It is better to take two steps under «’, then revert to ,
than to always follow .
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Proof — 3. Taking the limit
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Proof — 3. Taking the limit

- Two-step inequality:
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Proof — 3. Taking the limit

- Two-step inequality:

V7(s) < R(S)+1 ZP(5’|5,7r/(s)) [R(s/) + 1 ZP(SNS/,W/(S/))VW(SN):|

s/t
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Proof — 3. Taking the limit

- Two-step inequality:

V7(s) < R(S)+1 ZP(5’|5,7r/(s)) [R(s/) + 1 ZP(SNS/,W/(S/))VW(SN):|

s/t

- Apply the inequality t times:
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Proof — 3. Taking the limit

- Two-step inequality:
V7(s) < R(S)+1 ZP(5’|5,7r/(s)) [R(s/) + 1 ZP(SNS/,W/(S/))VW(SN):|
- Apply the inequality t times:

It is better to take t steps under «’/, then revert to m,
than to always follow 7.
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Proof — 3. Taking the limit

- Two-step inequality:
V7(s) < R(S)+1 ZP(5’|5,7r/(s)) [R(s/) + 1 ZP(SNS/,W/(S/))VW(SN):|
- Apply the inequality t times:

It is better to take t steps under «’/, then revert to m,
than to always follow 7. Last term is of order O(4").
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Proof — 3. Taking the limit

- Two-step inequality:

V7(s) < R(S)+1 ZP(5’|5,7r/(s)) [R(s/) + 1 ZP(SNS/,W/(S/))VW(SN):|

- Apply the inequality t times:
It is better to take t steps under «’/, then revert to m,

than to always follow 7. Last term is of order O(~").

- Take the limit t — oc:
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Proof — 3. Taking the limit

- Two-step inequality:
V7(s) < R(S)+1 ZP(S/|S,71'/(S)) [R(s/) + 1 ZP(SNS/,W/(S/))VW(SN):|
- Apply the inequality t times:

It is better to take t steps under «’/, then revert to m,
than to always follow 7. Last term is of order O(4").

- Take the limit t — oc:

It is better to follow 7 (always) than to follow 7 (always).
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Proof — 3. Taking the limit

- Two-step inequality:
V7(s) < R(S)+1 ZP(S/|S,71'/(S)) [R(s/) + 1 ZP(SNS/,W/(S/))VW(SN):|
- Apply the inequality t times:

It is better to take t steps under «’/, then revert to m,
than to always follow 7. Last term is of order O(4").

- Take the limit t — oc:

It is better to follow 7 (always) than to follow 7 (always).
Conclude that V™(s) < V™(s) for all states s € S.
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Policy iteration
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Policy iteration

How to compute 7*?
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Policy iteration

How to compute 7*?

1. Choose an initial policy 7 : S — A.
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Policy iteration

How to compute 7*?
1. Choose an initial policy 7 : S — A.

2. Repeat until convergence:
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Policy iteration

How to compute 7*?
1. Choose an initial policy 7 : S — A.

2. Repeat until convergence:

Compute the action value function Q™(s, a). ?
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Policy iteration

How to compute 7*?
1. Choose an initial policy 7 : S — A.

2. Repeat until convergence:

Compute the action value function Q™(s, a).
Compute the greedy policy 7'(s) = argmaxq Q7 (s, a).
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Policy iteration

How to compute 7*?
1. Choose an initial policy 7 : S — A.

2. Repeat until convergence:

Compute the action value function Q™(s, a).
Compute the greedy policy 7'(s) = argmaxq Q7 (s, a).
Replace 7 by 7.
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Policy iteration

How to compute 7*?
1. Choose an initial policy 7 : S — A.

2. Repeat until convergence:

Compute the action value function Q™(s, a).
Compute the greedy policy 7'(s) = argmaxq Q7 (s, a).
Replace 7 by 7.

0
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Policy iteration

How to compute 7*?
1. Choose an initial policy 7 : S — A.

2. Repeat until convergence:

Compute the action value function Q™(s, a).
Compute the greedy policy 7'(s) = argmaxq Q7 (s, a).
Replace 7 by 7.

evaluate
) —_—
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Policy iteration

How to compute 7*?
1. Choose an initial policy 7 : S — A.

2. Repeat until convergence:

Compute the action value function Q™(s, a).
Compute the greedy policy 7'(s) = argmaxq Q7 (s, a).
Replace 7 by 7.

evaluate V7o (s)
) —_—
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Policy iteration

How to compute 7*?
1. Choose an initial policy 7 : S — A.

2. Repeat until convergence:
Compute the action value function Q™(s, a).
Compute the greedy policy 7'(s) = argmaxq Q7 (s, a).
Replace 7 by 7.

evaluate V7o (s)

Q™o(s,a)

0
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Policy iteration

How to compute 7*?
1. Choose an initial policy 7 : S — A.

2. Repeat until convergence:

Compute the action value function Q™(s, a).
Compute the greedy policy 7'(s) = argmaxq Q7 (s, a).
Replace 7 by 7.

evaluate V™o (s) improve

Q™o(s,a)

0
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Policy iteration

How to compute 7*?
1. Choose an initial policy 7 : S — A.

2. Repeat until convergence:

Compute the action value function Q™(s, a).
Compute the greedy policy 7'(s) = argmaxq Q7 (s, a).
Replace 7 by 7.

evaluate V™o (s) improve evaluate

—
o Q™ (s, a) B
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Policy iteration

How to compute 7*?
1. Choose an initial policy 7 : S — A.

2. Repeat until convergence:

Compute the action value function Q™(s, a).
Compute the greedy policy 7'(s) = argmaxq Q7 (s, a).
Replace 7 by 7.

evaluate V7o (s) improve evaluate V™i(s)
E—

—
o Q™ (s, a) B
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Policy iteration

How to compute 7*?
1. Choose an initial policy 7 : S — A.

2. Repeat until convergence:

Compute the action value function Q™(s, a).
Compute the greedy policy 7'(s) = argmaxq Q7 (s, a).
Replace 7 by 7.

evaluate V™o (s) improve evaluate Vi
sl —_—

1
Q”O(S,G) Qm(

0
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Policy iteration

How to compute 7*?
1. Choose an initial policy 7 : S — A.

2. Repeat until convergence:

Compute the action value function Q™(s, a).
Compute the greedy policy 7'(s) = argmaxq Q7 (s, a).
Replace 7 by 7.

evaluate V™o (s) improve evaluate Vi
sl —_—

1
Q”O(S,G) Qm(

improve
)
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Policy iteration

How to compute 7*?
1. Choose an initial policy 7 : S — A.

2. Repeat until convergence:

Compute the action value function Q™(s, a).
Compute the greedy policy 7'(s) = argmaxq Q7 (s, a).
Replace 7 by 7/

evaluate improve evaluate
) —_— - —_— sl
Q™(s, a)

improve

vr(s)
Q™ (s, a)

Policy iteration is guaranteed to terminate.

True (A) or False (B)?
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Policy iteration
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Policy iteration

- How to compute 7*?
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Policy iteration

- How to compute 7*?

evaluate V™o(s) improve evaluate

—> o
o Q™ (s, a) i
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Policy iteration

- How to compute 7*?

evaluate V™o(s) improve evaluate

—> o
o Q™ (s, a) i

This process is guaranteed to terminate.
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Policy iteration

- How to compute 7*?

evaluate V™o(s) improve evaluate

—> o
o Q™ (s, a) i

This process is guaranteed to terminate.
But does it converge to an optimal policy?
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Policy iteration

- How to compute 7*?

evaluate V™o(s) improve evaluate

—> o
o Q™ (s, a) i

This process is guaranteed to terminate.
But does it converge to an optimal policy?

+ Theorem
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Policy iteration

- How to compute 7*?

evaluate V™o(s) improve evaluate

—> —> o
o Q™ (s, a) i

This process is guaranteed to terminate.
But does it converge to an optimal policy?

+ Theorem

If 7/(s) = arg maxq Q(s,a) and V™'(s) = V7(s) forall s € S,
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Policy iteration

- How to compute 7*?

evaluate V™o(s) improve evaluate
Ty — _ M — -
Q™ (s,a)

This process is guaranteed to terminate.
But does it converge to an optimal policy?

+ Theorem

If 7/(s) = arg maxq Q(s,a) and V™'(s) = V7(s) forall s € S,
then V7(s) = V*(s) forall s € S.
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Policy iteration

- How to compute 7*?

evaluate V™o(s) improve evaluate

—> o
o Q™ (s, a) i

This process is guaranteed to terminate.
But does it converge to an optimal policy?

+ Theorem

If 7/(s) = arg maxq Q(s,a) and V™'(s) = V7(s) forall s € S,
then V7(s) = V*(s) forall s € S.

- Proof idea
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Policy iteration

- How to compute 7*?

evaluate V™o(s) improve evaluate

—> o
o Q™ (s, a) i

This process is guaranteed to terminate.
But does it converge to an optimal policy?

- Theorem
If 7/(s) = arg maxq Q(s,a) and V™'(s) = V7(s) forall s € S,
then V7(s) = V*(s) forall s € S.

- Proof idea

Prove a key equality/inequality for terminal/non-terminal
policies;
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Policy iteration

- How to compute 7*?

evaluate V™o(s) improve evaluate

—> o
o Q™ (s, a) i

This process is guaranteed to terminate.
But does it converge to an optimal policy?

- Theorem
If 7/(s) = arg maxq Q(s,a) and V™'(s) = V7(s) forall s € S,
then V7(s) = V*(s) forall s € S.

- Proof idea

Prove a key equality/inequality for terminal/non-terminal
policies; iterate t times, then compare the limits as t — oc.
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Proof — 1. Bellman optimality equation
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Proof — 1. Bellman optimality equation

- Suppose policy iteration converges to 7.

82 /152



Proof — 1. Bellman optimality equation

- Suppose policy iteration converges to 7.

V(s) = R(s)+ D P(s'ls,7(s))V" () |Bellman equation]|
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Proof — 1. Bellman optimality equation

- Suppose policy iteration converges to 7.

V(s) = R(s)+ D P(s'ls,7(s))V" () |Bellman equation]|

R(s) + 73 P(S'ls 7 (9)V7(S")
s/

V7(s)
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Proof — 1. Bellman optimality equation

- Suppose policy iteration converges to 7.

V(s) = R(s)+ D P(s'ls,7(s))V" () |Bellman equation]|

R(s) + 73 P(S'ls 7 (9)V7(S")
s/

Now exploit that " is greedy with respect to = ...

V7(s)
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Proof — 1. Bellman optimality equation

- Suppose policy iteration converges to 7.

V(s) = R(s)+ D P(s'ls,7(s))V" () |Bellman equation]|

R(s) + 73 P(S'ls 7 (9)V7(S")
s/

Now exploit that " is greedy with respect to = ...

V7(s)

- Bellman optimality equation
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Proof — 1. Bellman optimality equation

- Suppose policy iteration converges to 7.

V(s) = R(s)+ D P(s'ls,7(s))V" () |Bellman equation]|

R(s) + 73 P(S'ls 7 (9)V7(S")
s/

Now exploit that " is greedy with respect to = ...

V7(s)

- Bellman optimality equation

V™(s) = R(s) + ymﬁngP(sﬂs, a)V™(s')

X
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Proof — 1. Bellman optimality equation

- Suppose policy iteration converges to 7.

V(s) = R(s)+ D P(s'ls,7(s))V" () |Bellman equation]|

R(s) + 73 P(S'ls 7 (9)V7(S")
s/

Now exploit that " is greedy with respect to = ...

V7(s)

- Bellman optimality equation

V™(s) = R(s) + ymﬁngP(sﬂs, a)V™(s')

X

These equations are nonlinear due to the max operation.
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Proof — 1. Bellman optimality equation

- Suppose policy iteration converges to 7.

V(s) = R(s) + VZ P(s'|s, 7 (s))V" (s") ’ Bellman equation ‘

R(s) + 73 P(S'ls 7 (9)V7(S")
s/

Now exploit that " is greedy with respect to = ...

V7(s)

- Bellman optimality equation

V™(s) = R(s) + ’ymﬁaxZP(SﬂS, a)V™(s')

X

These equations are nonlinear due to the max operation.
There are n equations for n unknowns (where s =1,2,...,n).
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Proof — 2. Inequality

90 /152



Proof — 2. Inequality

- Let 7 be any policy of the MDP:

91/152



Proof — 2. Inequality

- Let 7 be any policy of the MDP:

Vi(s) = R(s) + > _P(s'ls, #(s))V"(s") ’ Bellman equation
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Proof — 2. Inequality

- Let 7 be any policy of the MDP:

Vi(s) = R(s) + > _P(s'ls, #(s))V"(s") ’ Bellman equation‘

VA (s) R(s) + ymax >~ P(s'[s,a)V"(s)
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Proof — 2. Inequality

- Let 7 be any policy of the MDP:

Vi(s) = R(s) + > _P(s'ls, #(s))V"(s") ’ Bellman equation‘
Vi) < R(s) + ymax Y P(s'ls, a)V*(s)

- Compare to Bellman optimality equation (BOE):
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Proof — 2. Inequality

- Let 7 be any policy of the MDP:

Vi(s) = R(s) + > _P(s'ls, #(s))V"(s") ’ Bellman equation‘
Vi) < R(s) + ymax Y P(s'ls, a)V*(s)

- Compare to Bellman optimality equation (BOE):

VT (s) R(s) + v muaxz P(s'|s,a))V™(s")

s/
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Proof — 2. Inequality

- Let 7 be any policy of the MDP:

Vi(s) = R(s) + > _P(s'ls, #(s))V"(s") ’ Bellman equation ‘
Vi) < R(s) + ymax Y P(s'ls, a)V*(s)
- Compare to Bellman optimality equation (BOE):

VT (s) R(s) + v muaxz P(s'|s,a))V™(s")

s/

- Understanding the difference:
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Proof — 2. Inequality

- Let 7 be any policy of the MDP:

Vi(s) = R(s) + > _P(s'ls, #(s))V"(s") ’ Bellman equation‘
Vi) < R(s) + ymax Y P(s'ls, a)V*(s)

- Compare to Bellman optimality equation (BOE):

VT (s) R(s) + v muaxz P(s'|s,a))V™(s")

s/

- Understanding the difference:

The inequality holds for any policy 7 of the MDP.
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Proof — 2. Inequality

- Let 7 be any policy of the MDP:

Vi(s) = R(s) + > _P(s'ls, #(s))V"(s") ’ Bellman equation‘
Vi) < R(s) + ymax Y P(s'ls, a)V*(s)

- Compare to Bellman optimality equation (BOE):

VT (s) R(s) + v muaxz P(s'|s,a))V™(s")

s/

- Understanding the difference:

The inequality holds for any policy 7 of the MDP.
The BOE only holds for a solution « from policy iteration.
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- Iterating the inequality:
VA(s) < R(s) + wmgxzs/P(s’ls,a)V’”’(s’)
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Proof — 3. Taking the limit

- Iterating the inequality:
VA(s) < R(s) + wmgxzs/P(s’ls,a)V’”’(s’)

< R(S)—i—vmaaxZS/P(s'|S7a){ +wmaxz (s"|s", a7 (s )}

- Iterating the BOE:
VT(s) = R(s) + v mfxzs,P(5'|Sva)V”(s/)
= R(s) + vmaaxZS/P(s’b,a) [ ) 4+~ maxz P(s"|s", ')V (s )}

- Iterating t times:

Both right sides agree up to term of order ~'.
Taking the limit t — oo, we find V#(s) < vV™(s) foralls € S.

Since 7 is arbitrary, we conclude that = is optimal ‘
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- How policy iteration works:
It searches directly (and quite efficiently) through the
combinatorially large space of policies in the MDP.

- Is there another way?
Given an MDP = {S, A, P(s’[s, a),R(s),~}, recall how its

optimal policies and value functions are connected:

7(s) = argmax {Q*(S,Cl)}

argmax {R(s) +v> P(s's,a) V*(s’)}

So if we can directly compute the optimal value function V*(s),
then we can use it to derive an optimal policy 7*.

19 /152



Bellman optimality equation

120 /152



Bellman optimality equation

- Derivation:

121/152



Bellman optimality equation

- Derivation:

Vi(s) = max [Q*(s,a)]

122 /152



Bellman optimality equation

- Derivation:
Vi(s) = max [Q*(s,a)]

= max [R(S) + ’yz P(s'ls,a) V*(Sl)}

S/

123 /152



Bellman optimality equation

- Derivation:
VE(s) = max [Q*(S, CI)]
= max [R(s) + Z P(s'ls,a) V*(s’)}

- Solution?

124 /152



Bellman optimality equation

- Derivation:
Vi(s) = max [Q*(s,a)]

= max [R(S) + ’yz P(s'ls,a) V*(Sl)}

S/

- Solution?

Suppose we know the parameters {R(s), P(s'|s, a),~}.

— p— p—
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Bellman optimality equation

- Derivation:
Vi(s) = max [Q*(s,a)]

= max [R(S) + ’yz P(s'ls,a) V*(Sl)}

S/

- Solution?

Suppose we know the parameters {R(s), P(s'|s, a),~}.
Then the above gives us n equations for n unknowns:

Vi(s) = max |:R(S)+’)/ZP(S/’S,G) V*(s’)]

Sl
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Bellman optimality equation

- Derivation:
Vi(s) = max [Q*(s,a)]
= max [R(s) + ,y; P(s'|s,a) V*(s )}
- Solution?

Suppose we know the parameters {R(s), P(s'|s, a),~}.
Then the above gives us n equations for n unknowns:

V(s) = max [R(S)Jr'yZP(s’]s,a) V*(s’)]

But how to solve these nonlinear equations for V*(s)?
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Value iteration

- Idea in a nutshell

Replace the equality sign in the Bellman optimality
equation by an assignment operation:

V*(s) = max [R(S)+VZP(S'|S,G) V*(s’)]
Voew(s) ¢ max {R(s)wZP(sWs,'g) v01d<s'>}

/
L \

e P
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Value iteration

- Idea in a nutshell

Replace the equality sign in the Bellman optimality
equation by an assignment operation:

Vi(s) = max [R(S)+’yZP(S’|S,a)V*(S’)]
View(s) < max [R(s)+VZP(S’|S,G)V01d(s’)}

- Why this might work

The value function V*(s) is a fixed point of this iteration.
But does this iteration always converge to a valid solution?
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Algorithm for value iteration

1. Initialize: Vo(s) = 0foralls € S.

2. Iterate until convergence:

Vipa(s) = max [R(s) - yZP(s’|s,a) Vk(s’)} foralls € S.
S/
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Algorithm for value iteration

1. Initialize: Vo(s) = 0foralls € S.

2. Iterate until convergence:

Vegr(s) = max [R(s) - yZP(s’|s,a) Vk(s’)} foralls € S.

a
S/
3. Solve for optimal policy:

Qu(s,a) = R(S)+7 Y P(s']s,a) Vi(s"),

'>-Q 5/
7*(s) = lim argmaxQg(s,a).
k—o00 a
A =
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Value iteration (VI) versus policy iteration (PI)

- Compare and contrast:

Pl searches through the combinatorial space of policies.
VI searches through the continuous space of value
functions.

- Convergence:

Pl converges in a finite number of steps.
VI converges asymptotically (in the limit).
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That's all folks!

152 /152



