
CSE 150A-250A AI: Probabilistic Models

Lecture 16
Fall 2025
Trevor Bonjour
Department of Computer Science and Engineering
University of California, San Diego

Slides adapted from previous versions of the course (Prof. Lawrence, Prof. Alvarado, Prof Berg-Kirkpatrick)

1 / 152



Agenda

Review

Policy Based

Policy Evaluation

Policy Improvement

Policy Iteration

Value Iteration

2 / 152



Review



Value Functions

• State Value Function

V⇡(s) = E⇡

" 1X

t=0
�tR(st)

���� s0=s
#

= R(s) + �
X

s0
P(s0|s,⇡(s)) V⇡(s0)

• Action Value Function

Q⇡(s,a) = E⇡

" 1X

t=0
�tR(st)

���� s0=s,a0=a
#

= R(s) + �
X

s0
P(s0|s,a) V⇡(s0)

4 / 152



Optimality

• Goal

Find the optimal policy given the environment that the
agent is in.

• Planning

If reward function and transition probabilities are known.

• Reinforcement Learning
If reward function and transition probabilities are
unknown.

5 / 152



Optimality

There exists at most one policy ⇡⇤ such that V⇡⇤
(s) � V⇡(s) for

all policies ⇡ and states s of the MDP.

True (A) or False (B)?

6 / 152



Optimality

Optimal value functions, Q⇤(s,a) and V⇤(s) are unique and all
optimal policies share the same value functions.

True (A) or False (B)?

7 / 152



Optimality

• Theorem

There exists at least one policy ⇡⇤ (and perhaps many) such
that V⇡⇤

(s) � V⇡(s) for all policies ⇡ and states s of the MDP.

• Notation

V⇤(s) = V⇡⇤
(s)

Q⇤(s,a) = Q⇡⇤
(s,a)

These optimal value functions are unique.
(All optimal policies share the same value functions.)

8 / 152



Optimality

We can get the optimal policy ⇡⇤ from the optimal value
function V⇤(s) but not from the optimal action value function
Q⇤(s,a).

True (A) or False (B)?

9 / 152



Relations at optimality

• From the optimal action value function:

V⇤(s) = max
a

⇥
Q⇤(s,a)

⇤

⇡⇤(s) = argmax
a


Q⇤(s,a)

�

• From the optimal state value function:

Q⇤(s,a) = R(s) + �
X

s0
P(s0|s,a)V⇤(s0)

⇡⇤(s) = argmax
a

h
R(s) + �

X
s0
P(s0|s,a)V⇤(s0)

i

• Why are these relations useful?

Sometimes it can be easier to estimate Q⇤(s,a) or V⇤(s)
(which are continuous) than to learn ⇡⇤(s) (which is discrete).

10 / 152



Planning in MDPs

Given a complete model of the agent and its environment
as a Markov decision process, namely

MDP = {S,A,P(s0|s,a),R(s), �},

how can we efficiently compute (i.e., in time polynomial in the
number of states) any of the following:

1. an optimal policy ⇡⇤(s)?
2. the optimal state value function V⇤(s)?
3. the optimal action value function Q⇤(s,a)?

This is the problem of planning in MDPs.

11 / 152



Policy Based



Algorithms

1. Policy evaluation

How to compute V⇡(s) for some fixed policy ⇡?

2. Policy improvement

How to compute a policy ⇡0 such that V⇡0
(s) � V⇡(s)?

3. Policy iteration

How to compute an optimal policy ⇡⇤(s)?

13 / 152



Policy evaluation

• How to compute the state value function?

V⇡(s) = E⇡

" 1X

t=0
�tR(st)

���� s0=s
#

• Bellman equation:

V⇡(s) = R(s) + �
X

s0
P(s0|s,⇡(s))V⇡(s0)

• Solve linear system: There are n equations for n
unknowns (where s = 1, 2, . . . ,n).

14 / 152



Solving the linear system (con’t)

• Solution
R =


I� �P⇡

�
V⇡ =) V⇡ = (I� �P⇡)�1| {z }

matrix inverse

R

• Complexity

It takes O(n3) operations to solve this system of equations.

15 / 152



Policy improvement

• Problem statement

Given a policy ⇡ and its state value function V⇡(s),
how to compute a policy ⇡0 such that

V⇡0
(s) � V⇡(s) for all states s?

• Definition

Given the action value function Q⇡(s,a) for policy ⇡, we
define the greedy policy ⇡0 by

⇡0(s) = argmax
a


Q⇡(s,a)

�
.

16 / 152



Greedy policies

• In terms of the state value function:

⇡0(s) = argmax
a


Q⇡(s,a)

�

= argmax
a

h
R(s) + �

X
s0
P(s0|s,a) V⇡(s0)

i

= argmax
a

hX
s0
P(s0|s,a) V⇡(s0)

i

• Test your understanding:
⇡0(s) = ⇡(s) for some s 2 S? not necessarily

⇡0(s) 6= ⇡(s) for some s 2 S? not necessarily

Q⇡(s,⇡0(s)) � Q⇡(s,⇡(s)) for all s 2 S? TRUE

17 / 152



Policy improvement

• Greedy policy:
⇡0(s) = argmax

a
Q⇡(s,a)

• Theorem:
The greedy policy ⇡0(s) = argmaxa Q⇡(s,a) improves
everywhere on the policy ⇡ from which it was derived:

V⇡0
(s) � V⇡(s) for all states s 2 S

• Intuition:
If it’s better to choose action a in state s before following
⇡, then it’s always better to make this choice.

• Proof idea:
We’ll prove a key inequality for one-step deviations from ⇡,
then we’ll extend this inequality by an iterative argument.

18 / 152



Policy improvement

• Greedy policy:

⇡0(s) = argmax
a

Q⇡(s,a)

• Theorem:
The greedy policy ⇡0(s) = argmaxa Q⇡(s,a) improves
everywhere on the policy ⇡ from which it was derived:

V⇡0
(s) � V⇡(s) for all states s 2 S

• Intuition:
If it’s better to choose action a in state s before following
⇡, then it’s always better to make this choice.

• Proof idea:
We’ll prove a key inequality for one-step deviations from ⇡,
then we’ll extend this inequality by an iterative argument.

19 / 152



Policy improvement

• Greedy policy:
⇡0(s) = argmax

a
Q⇡(s,a)

• Theorem:
The greedy policy ⇡0(s) = argmaxa Q⇡(s,a) improves
everywhere on the policy ⇡ from which it was derived:

V⇡0
(s) � V⇡(s) for all states s 2 S

• Intuition:
If it’s better to choose action a in state s before following
⇡, then it’s always better to make this choice.

• Proof idea:
We’ll prove a key inequality for one-step deviations from ⇡,
then we’ll extend this inequality by an iterative argument.

20 / 152



Policy improvement

• Greedy policy:
⇡0(s) = argmax

a
Q⇡(s,a)

• Theorem:
The greedy policy ⇡0(s) = argmaxa Q⇡(s,a) improves
everywhere on the policy ⇡ from which it was derived:

V⇡0
(s) � V⇡(s) for all states s 2 S

• Intuition:
If it’s better to choose action a in state s before following
⇡, then it’s always better to make this choice.

• Proof idea:
We’ll prove a key inequality for one-step deviations from ⇡,
then we’ll extend this inequality by an iterative argument.

21 / 152



Policy improvement

• Greedy policy:
⇡0(s) = argmax

a
Q⇡(s,a)

• Theorem:
The greedy policy ⇡0(s) = argmaxa Q⇡(s,a) improves
everywhere on the policy ⇡ from which it was derived:

V⇡0
(s) � V⇡(s) for all states s 2 S

• Intuition:
If it’s better to choose action a in state s before following
⇡, then it’s always better to make this choice.

• Proof idea:
We’ll prove a key inequality for one-step deviations from ⇡,
then we’ll extend this inequality by an iterative argument.

22 / 152



Policy improvement

• Greedy policy:
⇡0(s) = argmax

a
Q⇡(s,a)

• Theorem:
The greedy policy ⇡0(s) = argmaxa Q⇡(s,a) improves
everywhere on the policy ⇡ from which it was derived:

V⇡0
(s) � V⇡(s) for all states s 2 S

• Intuition:

If it’s better to choose action a in state s before following
⇡, then it’s always better to make this choice.

• Proof idea:
We’ll prove a key inequality for one-step deviations from ⇡,
then we’ll extend this inequality by an iterative argument.

23 / 152



Policy improvement

• Greedy policy:
⇡0(s) = argmax

a
Q⇡(s,a)

• Theorem:
The greedy policy ⇡0(s) = argmaxa Q⇡(s,a) improves
everywhere on the policy ⇡ from which it was derived:

V⇡0
(s) � V⇡(s) for all states s 2 S

• Intuition:
If it’s better to choose action a in state s before following
⇡, then it’s always better to make this choice.

• Proof idea:
We’ll prove a key inequality for one-step deviations from ⇡,
then we’ll extend this inequality by an iterative argument.

24 / 152



Policy improvement

• Greedy policy:
⇡0(s) = argmax

a
Q⇡(s,a)

• Theorem:
The greedy policy ⇡0(s) = argmaxa Q⇡(s,a) improves
everywhere on the policy ⇡ from which it was derived:

V⇡0
(s) � V⇡(s) for all states s 2 S

• Intuition:
If it’s better to choose action a in state s before following
⇡, then it’s always better to make this choice.

• Proof idea:
We’ll prove a key inequality for one-step deviations from ⇡,
then we’ll extend this inequality by an iterative argument.

25 / 152



Proof — 1. Deriving the inequality

• Comparing value functions:

V⇡(s) = Q⇡(s,⇡(s))
 max

a
Q⇡(s,a)

= Q⇡(s,⇡0(s))
= R(s) + �

X

s0
P(s0|s,⇡0(s))V⇡(s0)

• Combining these steps:

V⇡(s)  R(s) + �
X

s0
P(s0|s,⇡0(s))V⇡(s0)

• Intuition:

It is better to take one step under ⇡0, then revert to ⇡,
than to always follow ⇡.

26 / 152



Proof — 1. Deriving the inequality

• Comparing value functions:

V⇡(s) = Q⇡(s,⇡(s))
 max

a
Q⇡(s,a)

= Q⇡(s,⇡0(s))
= R(s) + �

X

s0
P(s0|s,⇡0(s))V⇡(s0)

• Combining these steps:

V⇡(s)  R(s) + �
X

s0
P(s0|s,⇡0(s))V⇡(s0)

• Intuition:

It is better to take one step under ⇡0, then revert to ⇡,
than to always follow ⇡.

27 / 152



Proof — 1. Deriving the inequality

• Comparing value functions:

V⇡(s) = Q⇡(s,⇡(s))

 max
a
Q⇡(s,a)

= Q⇡(s,⇡0(s))
= R(s) + �

X

s0
P(s0|s,⇡0(s))V⇡(s0)

• Combining these steps:

V⇡(s)  R(s) + �
X

s0
P(s0|s,⇡0(s))V⇡(s0)

• Intuition:

It is better to take one step under ⇡0, then revert to ⇡,
than to always follow ⇡.

28 / 152



Proof — 1. Deriving the inequality

• Comparing value functions:

V⇡(s) = Q⇡(s,⇡(s))
 max

a
Q⇡(s,a)

= Q⇡(s,⇡0(s))
= R(s) + �

X

s0
P(s0|s,⇡0(s))V⇡(s0)

• Combining these steps:

V⇡(s)  R(s) + �
X

s0
P(s0|s,⇡0(s))V⇡(s0)

• Intuition:

It is better to take one step under ⇡0, then revert to ⇡,
than to always follow ⇡.

29 / 152



Proof — 1. Deriving the inequality

• Comparing value functions:

V⇡(s) = Q⇡(s,⇡(s))
 max

a
Q⇡(s,a)

= Q⇡(s,⇡0(s))

= R(s) + �
X

s0
P(s0|s,⇡0(s))V⇡(s0)

• Combining these steps:

V⇡(s)  R(s) + �
X

s0
P(s0|s,⇡0(s))V⇡(s0)

• Intuition:

It is better to take one step under ⇡0, then revert to ⇡,
than to always follow ⇡.

30 / 152



Proof — 1. Deriving the inequality

• Comparing value functions:

V⇡(s) = Q⇡(s,⇡(s))
 max

a
Q⇡(s,a)

= Q⇡(s,⇡0(s))
= R(s) + �

X

s0
P(s0|s,⇡0(s))V⇡(s0)

• Combining these steps:

V⇡(s)  R(s) + �
X

s0
P(s0|s,⇡0(s))V⇡(s0)

• Intuition:

It is better to take one step under ⇡0, then revert to ⇡,
than to always follow ⇡.

31 / 152



Proof — 1. Deriving the inequality

• Comparing value functions:

V⇡(s) = Q⇡(s,⇡(s))
 max

a
Q⇡(s,a)

= Q⇡(s,⇡0(s))
= R(s) + �

X

s0
P(s0|s,⇡0(s))V⇡(s0)

• Combining these steps:

V⇡(s)  R(s) + �
X

s0
P(s0|s,⇡0(s))V⇡(s0)

• Intuition:

It is better to take one step under ⇡0, then revert to ⇡,
than to always follow ⇡.

32 / 152



Proof — 1. Deriving the inequality

• Comparing value functions:

V⇡(s) = Q⇡(s,⇡(s))
 max

a
Q⇡(s,a)

= Q⇡(s,⇡0(s))
= R(s) + �

X

s0
P(s0|s,⇡0(s))V⇡(s0)

• Combining these steps:

V⇡(s)  R(s) + �
X

s0
P(s0|s,⇡0(s))V⇡(s0)

• Intuition:

It is better to take one step under ⇡0, then revert to ⇡,
than to always follow ⇡.

33 / 152



Proof — 1. Deriving the inequality

• Comparing value functions:

V⇡(s) = Q⇡(s,⇡(s))
 max

a
Q⇡(s,a)

= Q⇡(s,⇡0(s))
= R(s) + �

X

s0
P(s0|s,⇡0(s))V⇡(s0)

• Combining these steps:

V⇡(s)  R(s) + �
X

s0
P(s0|s,⇡0(s))V⇡(s0)

• Intuition:

It is better to take one step under ⇡0, then revert to ⇡,
than to always follow ⇡.

34 / 152



Proof — 1. Deriving the inequality

• Comparing value functions:

V⇡(s) = Q⇡(s,⇡(s))
 max

a
Q⇡(s,a)

= Q⇡(s,⇡0(s))
= R(s) + �

X

s0
P(s0|s,⇡0(s))V⇡(s0)

• Combining these steps:

V⇡(s)  R(s) + �
X

s0
P(s0|s,⇡0(s))V⇡(s0)

• Intuition:

It is better to take one step under ⇡0, then revert to ⇡,
than to always follow ⇡.

35 / 152



Proof — 2. Leveraging the inequality

• One-step inequality:

V⇡(s)  R(s) + �
X

s0
P(s0|s,⇡0(s))V⇡(s0)

What happens if we plug this inequality into itself?
Then we obtain ...

• Two-step inequality:
V⇡(s)  R(s)+ �

X

s0
P(s0|s,⇡0(s))

"
R(s0) + �

X

s00
P(s00|s0,⇡0(s0))V⇡(s00)

#

• Intuition:

It is better to take two steps under ⇡0, then revert to ⇡,
than to always follow ⇡.

36 / 152



Proof — 2. Leveraging the inequality

• One-step inequality:

V⇡(s)  R(s) + �
X

s0
P(s0|s,⇡0(s))V⇡(s0)

What happens if we plug this inequality into itself?
Then we obtain ...

• Two-step inequality:
V⇡(s)  R(s)+ �

X

s0
P(s0|s,⇡0(s))

"
R(s0) + �

X

s00
P(s00|s0,⇡0(s0))V⇡(s00)

#

• Intuition:

It is better to take two steps under ⇡0, then revert to ⇡,
than to always follow ⇡.

37 / 152



Proof — 2. Leveraging the inequality

• One-step inequality:

V⇡(s)  R(s) + �
X

s0
P(s0|s,⇡0(s))V⇡(s0)

What happens if we plug this inequality into itself?

Then we obtain ...

• Two-step inequality:
V⇡(s)  R(s)+ �

X

s0
P(s0|s,⇡0(s))

"
R(s0) + �

X

s00
P(s00|s0,⇡0(s0))V⇡(s00)

#

• Intuition:

It is better to take two steps under ⇡0, then revert to ⇡,
than to always follow ⇡.

38 / 152



Proof — 2. Leveraging the inequality

• One-step inequality:

V⇡(s)  R(s) + �
X

s0
P(s0|s,⇡0(s))V⇡(s0)

What happens if we plug this inequality into itself?
Then we obtain ...

• Two-step inequality:
V⇡(s)  R(s)+ �

X

s0
P(s0|s,⇡0(s))

"
R(s0) + �

X

s00
P(s00|s0,⇡0(s0))V⇡(s00)

#

• Intuition:

It is better to take two steps under ⇡0, then revert to ⇡,
than to always follow ⇡.

39 / 152



Proof — 2. Leveraging the inequality

• One-step inequality:

V⇡(s)  R(s) + �
X

s0
P(s0|s,⇡0(s))V⇡(s0)

What happens if we plug this inequality into itself?
Then we obtain ...

• Two-step inequality:

V⇡(s)  R(s)+ �
X

s0
P(s0|s,⇡0(s))

"
R(s0) + �

X

s00
P(s00|s0,⇡0(s0))V⇡(s00)

#

• Intuition:

It is better to take two steps under ⇡0, then revert to ⇡,
than to always follow ⇡.

40 / 152



Proof — 2. Leveraging the inequality

• One-step inequality:

V⇡(s)  R(s) + �
X

s0
P(s0|s,⇡0(s))V⇡(s0)

What happens if we plug this inequality into itself?
Then we obtain ...

• Two-step inequality:
V⇡(s)  R(s)+ �

X

s0
P(s0|s,⇡0(s))

"
R(s0) + �

X

s00
P(s00|s0,⇡0(s0))V⇡(s00)

#

• Intuition:

It is better to take two steps under ⇡0, then revert to ⇡,
than to always follow ⇡.

41 / 152



Proof — 2. Leveraging the inequality

• One-step inequality:

V⇡(s)  R(s) + �
X

s0
P(s0|s,⇡0(s))V⇡(s0)

What happens if we plug this inequality into itself?
Then we obtain ...

• Two-step inequality:
V⇡(s)  R(s)+ �

X

s0
P(s0|s,⇡0(s))

"
R(s0) + �

X

s00
P(s00|s0,⇡0(s0))V⇡(s00)

#

• Intuition:

It is better to take two steps under ⇡0, then revert to ⇡,
than to always follow ⇡.

42 / 152



Proof — 2. Leveraging the inequality

• One-step inequality:

V⇡(s)  R(s) + �
X

s0
P(s0|s,⇡0(s))V⇡(s0)

What happens if we plug this inequality into itself?
Then we obtain ...

• Two-step inequality:
V⇡(s)  R(s)+ �

X

s0
P(s0|s,⇡0(s))

"
R(s0) + �

X

s00
P(s00|s0,⇡0(s0))V⇡(s00)

#

• Intuition:

It is better to take two steps under ⇡0, then revert to ⇡,
than to always follow ⇡.

43 / 152



Proof — 3. Taking the limit

• Two-step inequality:
V⇡(s)  R(s)+ �

X

s0
P(s0|s,⇡0(s))

"
R(s0) + �

X

s00
P(s00|s0,⇡0(s0))V⇡(s00)

#

• Apply the inequality t times:

It is better to take t steps under ⇡0, then revert to ⇡,
than to always follow ⇡. Last term is of order O(�t).

• Take the limit t ! 1:

It is better to follow ⇡0 (always) than to follow ⇡ (always).
Conclude that V⇡(s)  V⇡0

(s) for all states s 2 S .

44 / 152



Proof — 3. Taking the limit

• Two-step inequality:

V⇡(s)  R(s)+ �
X

s0
P(s0|s,⇡0(s))

"
R(s0) + �

X

s00
P(s00|s0,⇡0(s0))V⇡(s00)

#

• Apply the inequality t times:

It is better to take t steps under ⇡0, then revert to ⇡,
than to always follow ⇡. Last term is of order O(�t).

• Take the limit t ! 1:

It is better to follow ⇡0 (always) than to follow ⇡ (always).
Conclude that V⇡(s)  V⇡0

(s) for all states s 2 S .

45 / 152



Proof — 3. Taking the limit

• Two-step inequality:
V⇡(s)  R(s)+ �

X

s0
P(s0|s,⇡0(s))

"
R(s0) + �

X

s00
P(s00|s0,⇡0(s0))V⇡(s00)

#

• Apply the inequality t times:

It is better to take t steps under ⇡0, then revert to ⇡,
than to always follow ⇡. Last term is of order O(�t).

• Take the limit t ! 1:

It is better to follow ⇡0 (always) than to follow ⇡ (always).
Conclude that V⇡(s)  V⇡0

(s) for all states s 2 S .

46 / 152



Proof — 3. Taking the limit

• Two-step inequality:
V⇡(s)  R(s)+ �

X

s0
P(s0|s,⇡0(s))

"
R(s0) + �

X

s00
P(s00|s0,⇡0(s0))V⇡(s00)

#

• Apply the inequality t times:

It is better to take t steps under ⇡0, then revert to ⇡,
than to always follow ⇡. Last term is of order O(�t).

• Take the limit t ! 1:

It is better to follow ⇡0 (always) than to follow ⇡ (always).
Conclude that V⇡(s)  V⇡0

(s) for all states s 2 S .

47 / 152



Proof — 3. Taking the limit

• Two-step inequality:
V⇡(s)  R(s)+ �

X

s0
P(s0|s,⇡0(s))

"
R(s0) + �

X

s00
P(s00|s0,⇡0(s0))V⇡(s00)

#

• Apply the inequality t times:

It is better to take t steps under ⇡0, then revert to ⇡,
than to always follow ⇡.

Last term is of order O(�t).

• Take the limit t ! 1:

It is better to follow ⇡0 (always) than to follow ⇡ (always).
Conclude that V⇡(s)  V⇡0

(s) for all states s 2 S .

48 / 152



Proof — 3. Taking the limit

• Two-step inequality:
V⇡(s)  R(s)+ �

X

s0
P(s0|s,⇡0(s))

"
R(s0) + �

X

s00
P(s00|s0,⇡0(s0))V⇡(s00)

#

• Apply the inequality t times:

It is better to take t steps under ⇡0, then revert to ⇡,
than to always follow ⇡. Last term is of order O(�t).

• Take the limit t ! 1:

It is better to follow ⇡0 (always) than to follow ⇡ (always).
Conclude that V⇡(s)  V⇡0

(s) for all states s 2 S .

49 / 152



Proof — 3. Taking the limit

• Two-step inequality:
V⇡(s)  R(s)+ �

X

s0
P(s0|s,⇡0(s))

"
R(s0) + �

X

s00
P(s00|s0,⇡0(s0))V⇡(s00)

#

• Apply the inequality t times:

It is better to take t steps under ⇡0, then revert to ⇡,
than to always follow ⇡. Last term is of order O(�t).

• Take the limit t ! 1:

It is better to follow ⇡0 (always) than to follow ⇡ (always).
Conclude that V⇡(s)  V⇡0

(s) for all states s 2 S .

50 / 152



Proof — 3. Taking the limit

• Two-step inequality:
V⇡(s)  R(s)+ �

X

s0
P(s0|s,⇡0(s))

"
R(s0) + �

X

s00
P(s00|s0,⇡0(s0))V⇡(s00)

#

• Apply the inequality t times:

It is better to take t steps under ⇡0, then revert to ⇡,
than to always follow ⇡. Last term is of order O(�t).

• Take the limit t ! 1:

It is better to follow ⇡0 (always) than to follow ⇡ (always).

Conclude that V⇡(s)  V⇡0
(s) for all states s 2 S .

51 / 152



Proof — 3. Taking the limit

• Two-step inequality:
V⇡(s)  R(s)+ �

X

s0
P(s0|s,⇡0(s))

"
R(s0) + �

X

s00
P(s00|s0,⇡0(s0))V⇡(s00)

#

• Apply the inequality t times:

It is better to take t steps under ⇡0, then revert to ⇡,
than to always follow ⇡. Last term is of order O(�t).

• Take the limit t ! 1:

It is better to follow ⇡0 (always) than to follow ⇡ (always).
Conclude that V⇡(s)  V⇡0

(s) for all states s 2 S .

52 / 152



Policy iteration

How to compute ⇡⇤?

1. Choose an initial policy ⇡ : S ! A.

2. Repeat until convergence:

Compute the action value function Q⇡(s,a).
Compute the greedy policy ⇡0(s) = argmaxa Q⇡(s,a).
Replace ⇡ by ⇡0.

⇡0
evaluate
����! V⇡0 (s)

Q⇡0 (s, a)
improve
����! ⇡1

evaluate
����! V⇡1 (s)

Q⇡1 (s, a)
improve
����! · · ·

Policy iteration is guaranteed to terminate.

True (A) or False (B)?

53 / 152



Policy iteration

How to compute ⇡⇤?

1. Choose an initial policy ⇡ : S ! A.

2. Repeat until convergence:

Compute the action value function Q⇡(s,a).
Compute the greedy policy ⇡0(s) = argmaxa Q⇡(s,a).
Replace ⇡ by ⇡0.

⇡0
evaluate
����! V⇡0 (s)

Q⇡0 (s, a)
improve
����! ⇡1

evaluate
����! V⇡1 (s)

Q⇡1 (s, a)
improve
����! · · ·

Policy iteration is guaranteed to terminate.

True (A) or False (B)?

54 / 152



Policy iteration

How to compute ⇡⇤?

1. Choose an initial policy ⇡ : S ! A.

2. Repeat until convergence:

Compute the action value function Q⇡(s,a).
Compute the greedy policy ⇡0(s) = argmaxa Q⇡(s,a).
Replace ⇡ by ⇡0.

⇡0
evaluate
����! V⇡0 (s)

Q⇡0 (s, a)
improve
����! ⇡1

evaluate
����! V⇡1 (s)

Q⇡1 (s, a)
improve
����! · · ·

Policy iteration is guaranteed to terminate.

True (A) or False (B)?

55 / 152



Policy iteration

How to compute ⇡⇤?

1. Choose an initial policy ⇡ : S ! A.

2. Repeat until convergence:

Compute the action value function Q⇡(s,a).
Compute the greedy policy ⇡0(s) = argmaxa Q⇡(s,a).
Replace ⇡ by ⇡0.

⇡0
evaluate
����! V⇡0 (s)

Q⇡0 (s, a)
improve
����! ⇡1

evaluate
����! V⇡1 (s)

Q⇡1 (s, a)
improve
����! · · ·

Policy iteration is guaranteed to terminate.

True (A) or False (B)?

56 / 152



Policy iteration

How to compute ⇡⇤?

1. Choose an initial policy ⇡ : S ! A.

2. Repeat until convergence:

Compute the action value function Q⇡(s,a).

Compute the greedy policy ⇡0(s) = argmaxa Q⇡(s,a).
Replace ⇡ by ⇡0.

⇡0
evaluate
����! V⇡0 (s)

Q⇡0 (s, a)
improve
����! ⇡1

evaluate
����! V⇡1 (s)

Q⇡1 (s, a)
improve
����! · · ·

Policy iteration is guaranteed to terminate.

True (A) or False (B)?

57 / 152



Policy iteration

How to compute ⇡⇤?

1. Choose an initial policy ⇡ : S ! A.

2. Repeat until convergence:

Compute the action value function Q⇡(s,a).
Compute the greedy policy ⇡0(s) = argmaxa Q⇡(s,a).

Replace ⇡ by ⇡0.

⇡0
evaluate
����! V⇡0 (s)

Q⇡0 (s, a)
improve
����! ⇡1

evaluate
����! V⇡1 (s)

Q⇡1 (s, a)
improve
����! · · ·

Policy iteration is guaranteed to terminate.

True (A) or False (B)?

58 / 152



Policy iteration

How to compute ⇡⇤?

1. Choose an initial policy ⇡ : S ! A.

2. Repeat until convergence:

Compute the action value function Q⇡(s,a).
Compute the greedy policy ⇡0(s) = argmaxa Q⇡(s,a).
Replace ⇡ by ⇡0.

⇡0
evaluate
����! V⇡0 (s)

Q⇡0 (s, a)
improve
����! ⇡1

evaluate
����! V⇡1 (s)

Q⇡1 (s, a)
improve
����! · · ·

Policy iteration is guaranteed to terminate.

True (A) or False (B)?

59 / 152



Policy iteration

How to compute ⇡⇤?

1. Choose an initial policy ⇡ : S ! A.

2. Repeat until convergence:

Compute the action value function Q⇡(s,a).
Compute the greedy policy ⇡0(s) = argmaxa Q⇡(s,a).
Replace ⇡ by ⇡0.

⇡0

evaluate
����! V⇡0 (s)

Q⇡0 (s, a)
improve
����! ⇡1

evaluate
����! V⇡1 (s)

Q⇡1 (s, a)
improve
����! · · ·

Policy iteration is guaranteed to terminate.

True (A) or False (B)?

60 / 152



Policy iteration

How to compute ⇡⇤?

1. Choose an initial policy ⇡ : S ! A.

2. Repeat until convergence:

Compute the action value function Q⇡(s,a).
Compute the greedy policy ⇡0(s) = argmaxa Q⇡(s,a).
Replace ⇡ by ⇡0.

⇡0
evaluate
����!

V⇡0 (s)
Q⇡0 (s, a)

improve
����! ⇡1

evaluate
����! V⇡1 (s)

Q⇡1 (s, a)
improve
����! · · ·

Policy iteration is guaranteed to terminate.

True (A) or False (B)?

61 / 152



Policy iteration

How to compute ⇡⇤?

1. Choose an initial policy ⇡ : S ! A.

2. Repeat until convergence:

Compute the action value function Q⇡(s,a).
Compute the greedy policy ⇡0(s) = argmaxa Q⇡(s,a).
Replace ⇡ by ⇡0.

⇡0
evaluate
����! V⇡0 (s)

Q⇡0 (s, a)
improve
����! ⇡1

evaluate
����! V⇡1 (s)

Q⇡1 (s, a)
improve
����! · · ·

Policy iteration is guaranteed to terminate.

True (A) or False (B)?

62 / 152



Policy iteration

How to compute ⇡⇤?

1. Choose an initial policy ⇡ : S ! A.

2. Repeat until convergence:

Compute the action value function Q⇡(s,a).
Compute the greedy policy ⇡0(s) = argmaxa Q⇡(s,a).
Replace ⇡ by ⇡0.

⇡0
evaluate
����! V⇡0 (s)

Q⇡0 (s, a)

improve
����! ⇡1

evaluate
����! V⇡1 (s)

Q⇡1 (s, a)
improve
����! · · ·

Policy iteration is guaranteed to terminate.

True (A) or False (B)?

63 / 152



Policy iteration

How to compute ⇡⇤?

1. Choose an initial policy ⇡ : S ! A.

2. Repeat until convergence:

Compute the action value function Q⇡(s,a).
Compute the greedy policy ⇡0(s) = argmaxa Q⇡(s,a).
Replace ⇡ by ⇡0.

⇡0
evaluate
����! V⇡0 (s)

Q⇡0 (s, a)
improve
����!

⇡1
evaluate
����! V⇡1 (s)

Q⇡1 (s, a)
improve
����! · · ·

Policy iteration is guaranteed to terminate.

True (A) or False (B)?

64 / 152



Policy iteration

How to compute ⇡⇤?

1. Choose an initial policy ⇡ : S ! A.

2. Repeat until convergence:

Compute the action value function Q⇡(s,a).
Compute the greedy policy ⇡0(s) = argmaxa Q⇡(s,a).
Replace ⇡ by ⇡0.

⇡0
evaluate
����! V⇡0 (s)

Q⇡0 (s, a)
improve
����! ⇡1

evaluate
����!

V⇡1 (s)
Q⇡1 (s, a)

improve
����! · · ·

Policy iteration is guaranteed to terminate.

True (A) or False (B)?

65 / 152



Policy iteration

How to compute ⇡⇤?

1. Choose an initial policy ⇡ : S ! A.

2. Repeat until convergence:

Compute the action value function Q⇡(s,a).
Compute the greedy policy ⇡0(s) = argmaxa Q⇡(s,a).
Replace ⇡ by ⇡0.

⇡0
evaluate
����! V⇡0 (s)

Q⇡0 (s, a)
improve
����! ⇡1

evaluate
����! V⇡1 (s)

Q⇡1 (s, a)
improve
����! · · ·

Policy iteration is guaranteed to terminate.

True (A) or False (B)?

66 / 152



Policy iteration

How to compute ⇡⇤?

1. Choose an initial policy ⇡ : S ! A.

2. Repeat until convergence:

Compute the action value function Q⇡(s,a).
Compute the greedy policy ⇡0(s) = argmaxa Q⇡(s,a).
Replace ⇡ by ⇡0.

⇡0
evaluate
����! V⇡0 (s)

Q⇡0 (s, a)
improve
����! ⇡1

evaluate
����! V⇡1 (s)

Q⇡1 (s, a)

improve
����! · · ·

Policy iteration is guaranteed to terminate.

True (A) or False (B)?

67 / 152



Policy iteration

How to compute ⇡⇤?

1. Choose an initial policy ⇡ : S ! A.

2. Repeat until convergence:

Compute the action value function Q⇡(s,a).
Compute the greedy policy ⇡0(s) = argmaxa Q⇡(s,a).
Replace ⇡ by ⇡0.

⇡0
evaluate
����! V⇡0 (s)

Q⇡0 (s, a)
improve
����! ⇡1

evaluate
����! V⇡1 (s)

Q⇡1 (s, a)
improve
����!

· · ·

Policy iteration is guaranteed to terminate.

True (A) or False (B)?

68 / 152



Policy iteration

How to compute ⇡⇤?

1. Choose an initial policy ⇡ : S ! A.

2. Repeat until convergence:

Compute the action value function Q⇡(s,a).
Compute the greedy policy ⇡0(s) = argmaxa Q⇡(s,a).
Replace ⇡ by ⇡0.

⇡0
evaluate
����! V⇡0 (s)

Q⇡0 (s, a)
improve
����! ⇡1

evaluate
����! V⇡1 (s)

Q⇡1 (s, a)
improve
����! · · ·

Policy iteration is guaranteed to terminate.

True (A) or False (B)?

69 / 152



Policy iteration

• How to compute ⇡⇤?

⇡0
evaluate

������! V⇡0(s)
Q⇡0(s,a)

improve
������! ⇡1

evaluate
������! · · ·

This process is guaranteed to terminate.
But does it converge to an optimal policy?

• Theorem

If ⇡0(s) = argmaxa Q⇡(s,a) and V⇡0
(s) = V⇡(s) for all s 2 S ,

then V⇡(s) = V⇤(s) for all s 2 S .

• Proof idea

Prove a key equality/inequality for terminal/non-terminal
policies; iterate t times, then compare the limits as t ! 1.

70 / 152



Policy iteration

• How to compute ⇡⇤?

⇡0
evaluate

������! V⇡0(s)
Q⇡0(s,a)

improve
������! ⇡1

evaluate
������! · · ·

This process is guaranteed to terminate.
But does it converge to an optimal policy?

• Theorem

If ⇡0(s) = argmaxa Q⇡(s,a) and V⇡0
(s) = V⇡(s) for all s 2 S ,

then V⇡(s) = V⇤(s) for all s 2 S .

• Proof idea

Prove a key equality/inequality for terminal/non-terminal
policies; iterate t times, then compare the limits as t ! 1.

71 / 152



Policy iteration

• How to compute ⇡⇤?

⇡0
evaluate

������! V⇡0(s)
Q⇡0(s,a)

improve
������! ⇡1

evaluate
������! · · ·

This process is guaranteed to terminate.
But does it converge to an optimal policy?

• Theorem

If ⇡0(s) = argmaxa Q⇡(s,a) and V⇡0
(s) = V⇡(s) for all s 2 S ,

then V⇡(s) = V⇤(s) for all s 2 S .

• Proof idea

Prove a key equality/inequality for terminal/non-terminal
policies; iterate t times, then compare the limits as t ! 1.

72 / 152



Policy iteration

• How to compute ⇡⇤?

⇡0
evaluate

������! V⇡0(s)
Q⇡0(s,a)

improve
������! ⇡1

evaluate
������! · · ·

This process is guaranteed to terminate.

But does it converge to an optimal policy?

• Theorem

If ⇡0(s) = argmaxa Q⇡(s,a) and V⇡0
(s) = V⇡(s) for all s 2 S ,

then V⇡(s) = V⇤(s) for all s 2 S .

• Proof idea

Prove a key equality/inequality for terminal/non-terminal
policies; iterate t times, then compare the limits as t ! 1.

73 / 152



Policy iteration

• How to compute ⇡⇤?

⇡0
evaluate

������! V⇡0(s)
Q⇡0(s,a)

improve
������! ⇡1

evaluate
������! · · ·

This process is guaranteed to terminate.
But does it converge to an optimal policy?

• Theorem

If ⇡0(s) = argmaxa Q⇡(s,a) and V⇡0
(s) = V⇡(s) for all s 2 S ,

then V⇡(s) = V⇤(s) for all s 2 S .

• Proof idea

Prove a key equality/inequality for terminal/non-terminal
policies; iterate t times, then compare the limits as t ! 1.

74 / 152



Policy iteration

• How to compute ⇡⇤?

⇡0
evaluate

������! V⇡0(s)
Q⇡0(s,a)

improve
������! ⇡1

evaluate
������! · · ·

This process is guaranteed to terminate.
But does it converge to an optimal policy?

• Theorem

If ⇡0(s) = argmaxa Q⇡(s,a) and V⇡0
(s) = V⇡(s) for all s 2 S ,

then V⇡(s) = V⇤(s) for all s 2 S .

• Proof idea

Prove a key equality/inequality for terminal/non-terminal
policies; iterate t times, then compare the limits as t ! 1.

75 / 152



Policy iteration

• How to compute ⇡⇤?

⇡0
evaluate

������! V⇡0(s)
Q⇡0(s,a)

improve
������! ⇡1

evaluate
������! · · ·

This process is guaranteed to terminate.
But does it converge to an optimal policy?

• Theorem

If ⇡0(s) = argmaxa Q⇡(s,a) and V⇡0
(s) = V⇡(s) for all s 2 S ,

then V⇡(s) = V⇤(s) for all s 2 S .

• Proof idea

Prove a key equality/inequality for terminal/non-terminal
policies; iterate t times, then compare the limits as t ! 1.

76 / 152



Policy iteration

• How to compute ⇡⇤?

⇡0
evaluate

������! V⇡0(s)
Q⇡0(s,a)

improve
������! ⇡1

evaluate
������! · · ·

This process is guaranteed to terminate.
But does it converge to an optimal policy?

• Theorem

If ⇡0(s) = argmaxa Q⇡(s,a) and V⇡0
(s) = V⇡(s) for all s 2 S ,

then V⇡(s) = V⇤(s) for all s 2 S .

• Proof idea

Prove a key equality/inequality for terminal/non-terminal
policies; iterate t times, then compare the limits as t ! 1.

77 / 152



Policy iteration

• How to compute ⇡⇤?

⇡0
evaluate

������! V⇡0(s)
Q⇡0(s,a)

improve
������! ⇡1

evaluate
������! · · ·

This process is guaranteed to terminate.
But does it converge to an optimal policy?

• Theorem

If ⇡0(s) = argmaxa Q⇡(s,a) and V⇡0
(s) = V⇡(s) for all s 2 S ,

then V⇡(s) = V⇤(s) for all s 2 S .

• Proof idea

Prove a key equality/inequality for terminal/non-terminal
policies; iterate t times, then compare the limits as t ! 1.

78 / 152



Policy iteration

• How to compute ⇡⇤?

⇡0
evaluate

������! V⇡0(s)
Q⇡0(s,a)

improve
������! ⇡1

evaluate
������! · · ·

This process is guaranteed to terminate.
But does it converge to an optimal policy?

• Theorem

If ⇡0(s) = argmaxa Q⇡(s,a) and V⇡0
(s) = V⇡(s) for all s 2 S ,

then V⇡(s) = V⇤(s) for all s 2 S .

• Proof idea

Prove a key equality/inequality for terminal/non-terminal
policies;

iterate t times, then compare the limits as t ! 1.

79 / 152



Policy iteration

• How to compute ⇡⇤?

⇡0
evaluate

������! V⇡0(s)
Q⇡0(s,a)

improve
������! ⇡1

evaluate
������! · · ·

This process is guaranteed to terminate.
But does it converge to an optimal policy?

• Theorem

If ⇡0(s) = argmaxa Q⇡(s,a) and V⇡0
(s) = V⇡(s) for all s 2 S ,

then V⇡(s) = V⇤(s) for all s 2 S .

• Proof idea

Prove a key equality/inequality for terminal/non-terminal
policies; iterate t times, then compare the limits as t ! 1.

80 / 152



Proof — 1. Bellman optimality equation

• Suppose policy iteration converges to ⇡0.

V⇡0
(s) = R(s) + �

X

s0
P(s0|s,⇡0(s))V⇡0

(s0) Bellman equation

V⇡(s) = R(s) + �
X

s0
P(s0|s,⇡0(s))V⇡(s0) at convergence

Now exploit that ⇡0 is greedy with respect to ⇡ ...

• Bellman optimality equation

V⇡(s) = R(s) + �max
a

X

s0
P(s0|s,a)V⇡(s0)

These equations are nonlinear due to the max operation.
There are n equations for n unknowns (where s = 1, 2, . . . ,n).

81 / 152



Proof — 1. Bellman optimality equation

• Suppose policy iteration converges to ⇡0.

V⇡0
(s) = R(s) + �

X

s0
P(s0|s,⇡0(s))V⇡0

(s0) Bellman equation

V⇡(s) = R(s) + �
X

s0
P(s0|s,⇡0(s))V⇡(s0) at convergence

Now exploit that ⇡0 is greedy with respect to ⇡ ...

• Bellman optimality equation

V⇡(s) = R(s) + �max
a

X

s0
P(s0|s,a)V⇡(s0)

These equations are nonlinear due to the max operation.
There are n equations for n unknowns (where s = 1, 2, . . . ,n).

82 / 152



Proof — 1. Bellman optimality equation

• Suppose policy iteration converges to ⇡0.

V⇡0
(s) = R(s) + �

X

s0
P(s0|s,⇡0(s))V⇡0

(s0) Bellman equation

V⇡(s) = R(s) + �
X

s0
P(s0|s,⇡0(s))V⇡(s0) at convergence

Now exploit that ⇡0 is greedy with respect to ⇡ ...

• Bellman optimality equation

V⇡(s) = R(s) + �max
a

X

s0
P(s0|s,a)V⇡(s0)

These equations are nonlinear due to the max operation.
There are n equations for n unknowns (where s = 1, 2, . . . ,n).

83 / 152



Proof — 1. Bellman optimality equation

• Suppose policy iteration converges to ⇡0.

V⇡0
(s) = R(s) + �

X

s0
P(s0|s,⇡0(s))V⇡0

(s0) Bellman equation

V⇡(s) = R(s) + �
X

s0
P(s0|s,⇡0(s))V⇡(s0) at convergence

Now exploit that ⇡0 is greedy with respect to ⇡ ...

• Bellman optimality equation

V⇡(s) = R(s) + �max
a

X

s0
P(s0|s,a)V⇡(s0)

These equations are nonlinear due to the max operation.
There are n equations for n unknowns (where s = 1, 2, . . . ,n).

84 / 152



Proof — 1. Bellman optimality equation

• Suppose policy iteration converges to ⇡0.

V⇡0
(s) = R(s) + �

X

s0
P(s0|s,⇡0(s))V⇡0

(s0) Bellman equation

V⇡(s) = R(s) + �
X

s0
P(s0|s,⇡0(s))V⇡(s0) at convergence

Now exploit that ⇡0 is greedy with respect to ⇡ ...

• Bellman optimality equation

V⇡(s) = R(s) + �max
a

X

s0
P(s0|s,a)V⇡(s0)

These equations are nonlinear due to the max operation.
There are n equations for n unknowns (where s = 1, 2, . . . ,n).

85 / 152



Proof — 1. Bellman optimality equation

• Suppose policy iteration converges to ⇡0.

V⇡0
(s) = R(s) + �

X

s0
P(s0|s,⇡0(s))V⇡0

(s0) Bellman equation

V⇡(s) = R(s) + �
X

s0
P(s0|s,⇡0(s))V⇡(s0) at convergence

Now exploit that ⇡0 is greedy with respect to ⇡ ...

• Bellman optimality equation

V⇡(s) = R(s) + �max
a

X

s0
P(s0|s,a)V⇡(s0)

These equations are nonlinear due to the max operation.
There are n equations for n unknowns (where s = 1, 2, . . . ,n).

86 / 152



Proof — 1. Bellman optimality equation

• Suppose policy iteration converges to ⇡0.

V⇡0
(s) = R(s) + �

X

s0
P(s0|s,⇡0(s))V⇡0

(s0) Bellman equation

V⇡(s) = R(s) + �
X

s0
P(s0|s,⇡0(s))V⇡(s0) at convergence

Now exploit that ⇡0 is greedy with respect to ⇡ ...

• Bellman optimality equation

V⇡(s) = R(s) + �max
a

X

s0
P(s0|s,a)V⇡(s0)

These equations are nonlinear due to the max operation.
There are n equations for n unknowns (where s = 1, 2, . . . ,n).

87 / 152



Proof — 1. Bellman optimality equation

• Suppose policy iteration converges to ⇡0.

V⇡0
(s) = R(s) + �

X

s0
P(s0|s,⇡0(s))V⇡0

(s0) Bellman equation

V⇡(s) = R(s) + �
X

s0
P(s0|s,⇡0(s))V⇡(s0) at convergence

Now exploit that ⇡0 is greedy with respect to ⇡ ...

• Bellman optimality equation

V⇡(s) = R(s) + �max
a

X

s0
P(s0|s,a)V⇡(s0)

These equations are nonlinear due to the max operation.

There are n equations for n unknowns (where s = 1, 2, . . . ,n).

88 / 152



Proof — 1. Bellman optimality equation

• Suppose policy iteration converges to ⇡0.

V⇡0
(s) = R(s) + �

X

s0
P(s0|s,⇡0(s))V⇡0

(s0) Bellman equation

V⇡(s) = R(s) + �
X

s0
P(s0|s,⇡0(s))V⇡(s0) at convergence

Now exploit that ⇡0 is greedy with respect to ⇡ ...

• Bellman optimality equation

V⇡(s) = R(s) + �max
a

X

s0
P(s0|s,a)V⇡(s0)

These equations are nonlinear due to the max operation.
There are n equations for n unknowns (where s = 1, 2, . . . ,n).

89 / 152



Proof — 2. Inequality

• Let ⇡̃ be any policy of the MDP:

V⇡̃(s) = R(s) + �
X

s0
P(s0|s, ⇡̃(s))V⇡̃(s0) Bellman equation

V⇡̃(s)  R(s) + �max
a

X

s0
P(s0|s, a)V⇡̃(s0) greedy

• Compare to Bellman optimality equation (BOE):

V⇡(s) = R(s) + � max
a

X

s0
P(s0|s, a))V⇡(s0)

• Understanding the difference:

The inequality holds for any policy ⇡̃ of the MDP.
The BOE only holds for a solution ⇡ from policy iteration.

90 / 152



Proof — 2. Inequality

• Let ⇡̃ be any policy of the MDP:

V⇡̃(s) = R(s) + �
X

s0
P(s0|s, ⇡̃(s))V⇡̃(s0) Bellman equation

V⇡̃(s)  R(s) + �max
a

X

s0
P(s0|s, a)V⇡̃(s0) greedy

• Compare to Bellman optimality equation (BOE):

V⇡(s) = R(s) + � max
a

X

s0
P(s0|s, a))V⇡(s0)

• Understanding the difference:

The inequality holds for any policy ⇡̃ of the MDP.
The BOE only holds for a solution ⇡ from policy iteration.

91 / 152



Proof — 2. Inequality

• Let ⇡̃ be any policy of the MDP:

V⇡̃(s) = R(s) + �
X

s0
P(s0|s, ⇡̃(s))V⇡̃(s0) Bellman equation

V⇡̃(s)  R(s) + �max
a

X

s0
P(s0|s, a)V⇡̃(s0) greedy

• Compare to Bellman optimality equation (BOE):

V⇡(s) = R(s) + � max
a

X

s0
P(s0|s, a))V⇡(s0)

• Understanding the difference:

The inequality holds for any policy ⇡̃ of the MDP.
The BOE only holds for a solution ⇡ from policy iteration.

92 / 152



Proof — 2. Inequality

• Let ⇡̃ be any policy of the MDP:

V⇡̃(s) = R(s) + �
X

s0
P(s0|s, ⇡̃(s))V⇡̃(s0) Bellman equation

V⇡̃(s)  R(s) + �max
a

X

s0
P(s0|s, a)V⇡̃(s0) greedy

• Compare to Bellman optimality equation (BOE):

V⇡(s) = R(s) + � max
a

X

s0
P(s0|s, a))V⇡(s0)

• Understanding the difference:

The inequality holds for any policy ⇡̃ of the MDP.
The BOE only holds for a solution ⇡ from policy iteration.

93 / 152



Proof — 2. Inequality

• Let ⇡̃ be any policy of the MDP:

V⇡̃(s) = R(s) + �
X

s0
P(s0|s, ⇡̃(s))V⇡̃(s0) Bellman equation

V⇡̃(s)  R(s) + �max
a

X

s0
P(s0|s, a)V⇡̃(s0) greedy

• Compare to Bellman optimality equation (BOE):

V⇡(s) = R(s) + � max
a

X

s0
P(s0|s, a))V⇡(s0)

• Understanding the difference:

The inequality holds for any policy ⇡̃ of the MDP.
The BOE only holds for a solution ⇡ from policy iteration.

94 / 152



Proof — 2. Inequality

• Let ⇡̃ be any policy of the MDP:

V⇡̃(s) = R(s) + �
X

s0
P(s0|s, ⇡̃(s))V⇡̃(s0) Bellman equation

V⇡̃(s)  R(s) + �max
a

X

s0
P(s0|s, a)V⇡̃(s0) greedy

• Compare to Bellman optimality equation (BOE):

V⇡(s) = R(s) + � max
a

X

s0
P(s0|s, a))V⇡(s0)

• Understanding the difference:

The inequality holds for any policy ⇡̃ of the MDP.
The BOE only holds for a solution ⇡ from policy iteration.

95 / 152



Proof — 2. Inequality

• Let ⇡̃ be any policy of the MDP:

V⇡̃(s) = R(s) + �
X

s0
P(s0|s, ⇡̃(s))V⇡̃(s0) Bellman equation

V⇡̃(s)  R(s) + �max
a

X

s0
P(s0|s, a)V⇡̃(s0) greedy

• Compare to Bellman optimality equation (BOE):

V⇡(s) = R(s) + � max
a

X

s0
P(s0|s, a))V⇡(s0)

• Understanding the difference:

The inequality holds for any policy ⇡̃ of the MDP.
The BOE only holds for a solution ⇡ from policy iteration.

96 / 152



Proof — 2. Inequality

• Let ⇡̃ be any policy of the MDP:

V⇡̃(s) = R(s) + �
X

s0
P(s0|s, ⇡̃(s))V⇡̃(s0) Bellman equation

V⇡̃(s)  R(s) + �max
a

X

s0
P(s0|s, a)V⇡̃(s0) greedy

• Compare to Bellman optimality equation (BOE):

V⇡(s) = R(s) + � max
a

X

s0
P(s0|s, a))V⇡(s0)

• Understanding the difference:

The inequality holds for any policy ⇡̃ of the MDP.

The BOE only holds for a solution ⇡ from policy iteration.

97 / 152



Proof — 2. Inequality

• Let ⇡̃ be any policy of the MDP:

V⇡̃(s) = R(s) + �
X

s0
P(s0|s, ⇡̃(s))V⇡̃(s0) Bellman equation

V⇡̃(s)  R(s) + �max
a

X

s0
P(s0|s, a)V⇡̃(s0) greedy

• Compare to Bellman optimality equation (BOE):

V⇡(s) = R(s) + � max
a

X

s0
P(s0|s, a))V⇡(s0)

• Understanding the difference:

The inequality holds for any policy ⇡̃ of the MDP.
The BOE only holds for a solution ⇡ from policy iteration.

98 / 152



Proof — 3. Taking the limit

• Iterating the inequality:
V⇡̃(s)  R(s) + �max

a

X
s0
P(s0|s, a)V⇡̃(s0)

 R(s) + �max
a

X
s0
P(s0|s, a)


R(s0) + �max

a0

X
s00
P(s00|s0, a0)V⇡̃(s00)

�

• Iterating the BOE:
V⇡(s) = R(s) + �max

a

X
s0
P(s0|s, a)V⇡(s0)

= R(s) + �max
a

X
s0
P(s0|s, a)


R(s0) + �max

a0

X
s00
P(s00|s0, a0)V⇡(s00)

�

• Iterating t times:

Both right sides agree up to term of order �t.
Taking the limit t ! 1, we find V⇡̃(s)  V⇡(s) for all s 2 S .

Since ⇡̃ is arbitrary, we conclude that ⇡ is optimal .

99 / 152



Proof — 3. Taking the limit

• Iterating the inequality:

V⇡̃(s)  R(s) + �max
a

X
s0
P(s0|s, a)V⇡̃(s0)

 R(s) + �max
a

X
s0
P(s0|s, a)


R(s0) + �max

a0

X
s00
P(s00|s0, a0)V⇡̃(s00)

�

• Iterating the BOE:
V⇡(s) = R(s) + �max

a

X
s0
P(s0|s, a)V⇡(s0)

= R(s) + �max
a

X
s0
P(s0|s, a)


R(s0) + �max

a0

X
s00
P(s00|s0, a0)V⇡(s00)

�

• Iterating t times:

Both right sides agree up to term of order �t.
Taking the limit t ! 1, we find V⇡̃(s)  V⇡(s) for all s 2 S .

Since ⇡̃ is arbitrary, we conclude that ⇡ is optimal .

100 / 152



Proof — 3. Taking the limit

• Iterating the inequality:
V⇡̃(s)  R(s) + �max

a

X
s0
P(s0|s, a)V⇡̃(s0)

 R(s) + �max
a

X
s0
P(s0|s, a)


R(s0) + �max

a0

X
s00
P(s00|s0, a0)V⇡̃(s00)

�

• Iterating the BOE:
V⇡(s) = R(s) + �max

a

X
s0
P(s0|s, a)V⇡(s0)

= R(s) + �max
a

X
s0
P(s0|s, a)


R(s0) + �max

a0

X
s00
P(s00|s0, a0)V⇡(s00)

�

• Iterating t times:

Both right sides agree up to term of order �t.
Taking the limit t!1, we find V⇡̃(s)  V⇡(s) for all s 2 S .

Since ⇡̃ is arbitrary, we conclude that ⇡ is optimal .

101 / 152



Proof — 3. Taking the limit

• Iterating the inequality:
V⇡̃(s)  R(s) + �max

a

X
s0
P(s0|s, a)V⇡̃(s0)

 R(s) + �max
a

X
s0
P(s0|s, a)


R(s0) + �max

a0

X
s00
P(s00|s0, a0)V⇡̃(s00)

�

• Iterating the BOE:
V⇡(s) = R(s) + �max

a

X
s0
P(s0|s, a)V⇡(s0)

= R(s) + �max
a

X
s0
P(s0|s, a)


R(s0) + �max

a0

X
s00
P(s00|s0, a0)V⇡(s00)

�

• Iterating t times:

Both right sides agree up to term of order �t.
Taking the limit t!1, we find V⇡̃(s)  V⇡(s) for all s 2 S .

Since ⇡̃ is arbitrary, we conclude that ⇡ is optimal .

102 / 152



Proof — 3. Taking the limit

• Iterating the inequality:
V⇡̃(s)  R(s) + �max

a

X
s0
P(s0|s, a)V⇡̃(s0)

 R(s) + �max
a

X
s0
P(s0|s, a)


R(s0) + �max

a0

X
s00
P(s00|s0, a0)V⇡̃(s00)

�

• Iterating the BOE:

V⇡(s) = R(s) + �max
a

X
s0
P(s0|s, a)V⇡(s0)

= R(s) + �max
a

X
s0
P(s0|s, a)


R(s0) + �max

a0

X
s00
P(s00|s0, a0)V⇡(s00)

�

• Iterating t times:

Both right sides agree up to term of order �t.
Taking the limit t!1, we find V⇡̃(s)  V⇡(s) for all s 2 S .

Since ⇡̃ is arbitrary, we conclude that ⇡ is optimal .

103 / 152



Proof — 3. Taking the limit

• Iterating the inequality:
V⇡̃(s)  R(s) + �max

a

X
s0
P(s0|s, a)V⇡̃(s0)

 R(s) + �max
a

X
s0
P(s0|s, a)


R(s0) + �max

a0

X
s00
P(s00|s0, a0)V⇡̃(s00)

�

• Iterating the BOE:
V⇡(s) = R(s) + �max

a

X
s0
P(s0|s, a)V⇡(s0)

= R(s) + �max
a

X
s0
P(s0|s, a)


R(s0) + �max

a0

X
s00
P(s00|s0, a0)V⇡(s00)

�

• Iterating t times:

Both right sides agree up to term of order �t.
Taking the limit t!1, we find V⇡̃(s)  V⇡(s) for all s 2 S .

Since ⇡̃ is arbitrary, we conclude that ⇡ is optimal .

104 / 152



Proof — 3. Taking the limit

• Iterating the inequality:
V⇡̃(s)  R(s) + �max

a

X
s0
P(s0|s, a)V⇡̃(s0)

 R(s) + �max
a

X
s0
P(s0|s, a)


R(s0) + �max

a0

X
s00
P(s00|s0, a0)V⇡̃(s00)

�

• Iterating the BOE:
V⇡(s) = R(s) + �max

a

X
s0
P(s0|s, a)V⇡(s0)

= R(s) + �max
a

X
s0
P(s0|s, a)


R(s0) + �max

a0

X
s00
P(s00|s0, a0)V⇡(s00)

�

• Iterating t times:

Both right sides agree up to term of order �t.
Taking the limit t!1, we find V⇡̃(s)  V⇡(s) for all s 2 S .

Since ⇡̃ is arbitrary, we conclude that ⇡ is optimal .

105 / 152



Proof — 3. Taking the limit

• Iterating the inequality:
V⇡̃(s)  R(s) + �max

a

X
s0
P(s0|s, a)V⇡̃(s0)

 R(s) + �max
a

X
s0
P(s0|s, a)


R(s0) + �max

a0

X
s00
P(s00|s0, a0)V⇡̃(s00)

�

• Iterating the BOE:
V⇡(s) = R(s) + �max

a

X
s0
P(s0|s, a)V⇡(s0)

= R(s) + �max
a

X
s0
P(s0|s, a)


R(s0) + �max

a0

X
s00
P(s00|s0, a0)V⇡(s00)

�

• Iterating t times:

Both right sides agree up to term of order �t.
Taking the limit t!1, we find V⇡̃(s)  V⇡(s) for all s 2 S .

Since ⇡̃ is arbitrary, we conclude that ⇡ is optimal .

106 / 152



Proof — 3. Taking the limit

• Iterating the inequality:
V⇡̃(s)  R(s) + �max

a

X
s0
P(s0|s, a)V⇡̃(s0)

 R(s) + �max
a

X
s0
P(s0|s, a)


R(s0) + �max

a0

X
s00
P(s00|s0, a0)V⇡̃(s00)

�

• Iterating the BOE:
V⇡(s) = R(s) + �max

a

X
s0
P(s0|s, a)V⇡(s0)

= R(s) + �max
a

X
s0
P(s0|s, a)


R(s0) + �max

a0

X
s00
P(s00|s0, a0)V⇡(s00)

�

• Iterating t times:

Both right sides agree up to term of order �t.

Taking the limit t!1, we find V⇡̃(s)  V⇡(s) for all s 2 S .

Since ⇡̃ is arbitrary, we conclude that ⇡ is optimal .

107 / 152



Proof — 3. Taking the limit

• Iterating the inequality:
V⇡̃(s)  R(s) + �max

a

X
s0
P(s0|s, a)V⇡̃(s0)

 R(s) + �max
a

X
s0
P(s0|s, a)


R(s0) + �max

a0

X
s00
P(s00|s0, a0)V⇡̃(s00)

�

• Iterating the BOE:
V⇡(s) = R(s) + �max

a

X
s0
P(s0|s, a)V⇡(s0)

= R(s) + �max
a

X
s0
P(s0|s, a)


R(s0) + �max

a0

X
s00
P(s00|s0, a0)V⇡(s00)

�

• Iterating t times:

Both right sides agree up to term of order �t.
Taking the limit t!1, we find V⇡̃(s)  V⇡(s) for all s 2 S .

Since ⇡̃ is arbitrary, we conclude that ⇡ is optimal .

108 / 152



Proof — 3. Taking the limit

• Iterating the inequality:
V⇡̃(s)  R(s) + �max

a

X
s0
P(s0|s, a)V⇡̃(s0)

 R(s) + �max
a

X
s0
P(s0|s, a)


R(s0) + �max

a0

X
s00
P(s00|s0, a0)V⇡̃(s00)

�

• Iterating the BOE:
V⇡(s) = R(s) + �max

a

X
s0
P(s0|s, a)V⇡(s0)

= R(s) + �max
a

X
s0
P(s0|s, a)


R(s0) + �max

a0

X
s00
P(s00|s0, a0)V⇡(s00)

�

• Iterating t times:

Both right sides agree up to term of order �t.
Taking the limit t!1, we find V⇡̃(s)  V⇡(s) for all s 2 S .

Since ⇡̃ is arbitrary, we conclude that ⇡ is optimal .

109 / 152



Value Iteration



Motivation

• How policy iteration works:

It searches directly (and quite efficiently) through the
combinatorially large space of policies in the MDP.

• Is there another way?

Given an MDP = {S,A,P(s0|s,a),R(s), �}, recall how its
optimal policies and value functions are connected:

⇡⇤(s) = argmax
a


Q⇤(s,a)

�

= argmax
a


R(s) + �

X

s0
P(s0|s,a) V⇤(s0)

�

So if we can directly compute the optimal value function V⇤(s),
then we can use it to derive an optimal policy ⇡⇤.

111 / 152



Motivation

• How policy iteration works:

It searches directly (and quite efficiently) through the
combinatorially large space of policies in the MDP.

• Is there another way?

Given an MDP = {S,A,P(s0|s,a),R(s), �}, recall how its
optimal policies and value functions are connected:

⇡⇤(s) = argmax
a


Q⇤(s,a)

�

= argmax
a


R(s) + �

X

s0
P(s0|s,a) V⇤(s0)

�

So if we can directly compute the optimal value function V⇤(s),
then we can use it to derive an optimal policy ⇡⇤.

112 / 152



Motivation

• How policy iteration works:

It searches directly (and quite efficiently) through the
combinatorially large space of policies in the MDP.

• Is there another way?

Given an MDP = {S,A,P(s0|s,a),R(s), �}, recall how its
optimal policies and value functions are connected:

⇡⇤(s) = argmax
a


Q⇤(s,a)

�

= argmax
a


R(s) + �

X

s0
P(s0|s,a) V⇤(s0)

�

So if we can directly compute the optimal value function V⇤(s),
then we can use it to derive an optimal policy ⇡⇤.

113 / 152



Motivation

• How policy iteration works:

It searches directly (and quite efficiently) through the
combinatorially large space of policies in the MDP.

• Is there another way?

Given an MDP = {S,A,P(s0|s,a),R(s), �}, recall how its
optimal policies and value functions are connected:

⇡⇤(s) = argmax
a


Q⇤(s,a)

�

= argmax
a


R(s) + �

X

s0
P(s0|s,a) V⇤(s0)

�

So if we can directly compute the optimal value function V⇤(s),
then we can use it to derive an optimal policy ⇡⇤.

114 / 152



Motivation

• How policy iteration works:

It searches directly (and quite efficiently) through the
combinatorially large space of policies in the MDP.

• Is there another way?

Given an MDP = {S,A,P(s0|s,a),R(s), �}, recall how its
optimal policies and value functions are connected:

⇡⇤(s) = argmax
a


Q⇤(s,a)

�

= argmax
a


R(s) + �

X

s0
P(s0|s,a) V⇤(s0)

�

So if we can directly compute the optimal value function V⇤(s),
then we can use it to derive an optimal policy ⇡⇤.

115 / 152



Motivation

• How policy iteration works:

It searches directly (and quite efficiently) through the
combinatorially large space of policies in the MDP.

• Is there another way?

Given an MDP = {S,A,P(s0|s,a),R(s), �}, recall how its
optimal policies and value functions are connected:

⇡⇤(s) = argmax
a


Q⇤(s,a)

�

= argmax
a


R(s) + �

X

s0
P(s0|s,a) V⇤(s0)

�

So if we can directly compute the optimal value function V⇤(s),
then we can use it to derive an optimal policy ⇡⇤.

116 / 152



Motivation

• How policy iteration works:

It searches directly (and quite efficiently) through the
combinatorially large space of policies in the MDP.

• Is there another way?

Given an MDP = {S,A,P(s0|s,a),R(s), �}, recall how its
optimal policies and value functions are connected:

⇡⇤(s) = argmax
a


Q⇤(s,a)

�

= argmax
a


R(s) + �

X

s0
P(s0|s,a) V⇤(s0)

�

So if we can directly compute the optimal value function V⇤(s),
then we can use it to derive an optimal policy ⇡⇤.

117 / 152



Motivation

• How policy iteration works:

It searches directly (and quite efficiently) through the
combinatorially large space of policies in the MDP.

• Is there another way?

Given an MDP = {S,A,P(s0|s,a),R(s), �}, recall how its
optimal policies and value functions are connected:

⇡⇤(s) = argmax
a


Q⇤(s,a)

�

= argmax
a


R(s) + �

X

s0
P(s0|s,a) V⇤(s0)

�

So if we can directly compute the optimal value function V⇤(s),

then we can use it to derive an optimal policy ⇡⇤.

118 / 152



Motivation

• How policy iteration works:

It searches directly (and quite efficiently) through the
combinatorially large space of policies in the MDP.

• Is there another way?

Given an MDP = {S,A,P(s0|s,a),R(s), �}, recall how its
optimal policies and value functions are connected:

⇡⇤(s) = argmax
a


Q⇤(s,a)

�

= argmax
a


R(s) + �

X

s0
P(s0|s,a) V⇤(s0)

�

So if we can directly compute the optimal value function V⇤(s),
then we can use it to derive an optimal policy ⇡⇤.

119 / 152



Bellman optimality equation

• Derivation:

V⇤(s) = max
a


Q⇤(s,a)

�

= max
a


R(s) + �

X

s0
P(s0|s,a) V⇤(s0)

�

• Solution?

Suppose we know the parameters {R(s),P(s0|s,a), �}.
Then the above gives us n equations for n unknowns:

V⇤(s) = max
a


R(s) + �

X

s0
P(s0|s,a) V⇤(s0)

�

But how to solve these nonlinear equations for V⇤(s)?

120 / 152



Bellman optimality equation

• Derivation:

V⇤(s) = max
a


Q⇤(s,a)

�

= max
a


R(s) + �

X

s0
P(s0|s,a) V⇤(s0)

�

• Solution?

Suppose we know the parameters {R(s),P(s0|s,a), �}.
Then the above gives us n equations for n unknowns:

V⇤(s) = max
a


R(s) + �

X

s0
P(s0|s,a) V⇤(s0)

�

But how to solve these nonlinear equations for V⇤(s)?

121 / 152



Bellman optimality equation

• Derivation:

V⇤(s) = max
a


Q⇤(s,a)

�

= max
a


R(s) + �

X

s0
P(s0|s,a) V⇤(s0)

�

• Solution?

Suppose we know the parameters {R(s),P(s0|s,a), �}.
Then the above gives us n equations for n unknowns:

V⇤(s) = max
a


R(s) + �

X

s0
P(s0|s,a) V⇤(s0)

�

But how to solve these nonlinear equations for V⇤(s)?

122 / 152



Bellman optimality equation

• Derivation:

V⇤(s) = max
a


Q⇤(s,a)

�

= max
a


R(s) + �

X

s0
P(s0|s,a) V⇤(s0)

�

• Solution?

Suppose we know the parameters {R(s),P(s0|s,a), �}.
Then the above gives us n equations for n unknowns:

V⇤(s) = max
a


R(s) + �

X

s0
P(s0|s,a) V⇤(s0)

�

But how to solve these nonlinear equations for V⇤(s)?

123 / 152



Bellman optimality equation

• Derivation:

V⇤(s) = max
a


Q⇤(s,a)

�

= max
a


R(s) + �

X

s0
P(s0|s,a) V⇤(s0)

�

• Solution?

Suppose we know the parameters {R(s),P(s0|s,a), �}.
Then the above gives us n equations for n unknowns:

V⇤(s) = max
a


R(s) + �

X

s0
P(s0|s,a) V⇤(s0)

�

But how to solve these nonlinear equations for V⇤(s)?

124 / 152



Bellman optimality equation

• Derivation:

V⇤(s) = max
a


Q⇤(s,a)

�

= max
a


R(s) + �

X

s0
P(s0|s,a) V⇤(s0)

�

• Solution?

Suppose we know the parameters {R(s),P(s0|s,a), �}.

Then the above gives us n equations for n unknowns:

V⇤(s) = max
a


R(s) + �

X

s0
P(s0|s,a) V⇤(s0)

�

But how to solve these nonlinear equations for V⇤(s)?

125 / 152



Bellman optimality equation

• Derivation:

V⇤(s) = max
a


Q⇤(s,a)

�

= max
a


R(s) + �

X

s0
P(s0|s,a) V⇤(s0)

�

• Solution?

Suppose we know the parameters {R(s),P(s0|s,a), �}.
Then the above gives us n equations for n unknowns:

V⇤(s) = max
a


R(s) + �

X

s0
P(s0|s,a) V⇤(s0)

�

But how to solve these nonlinear equations for V⇤(s)?

126 / 152



Bellman optimality equation

• Derivation:

V⇤(s) = max
a


Q⇤(s,a)

�

= max
a


R(s) + �

X

s0
P(s0|s,a) V⇤(s0)

�

• Solution?

Suppose we know the parameters {R(s),P(s0|s,a), �}.
Then the above gives us n equations for n unknowns:

V⇤(s) = max
a


R(s) + �

X

s0
P(s0|s,a) V⇤(s0)

�

But how to solve these nonlinear equations for V⇤(s)?

127 / 152



Bellman optimality equation

• Derivation:

V⇤(s) = max
a


Q⇤(s,a)

�

= max
a


R(s) + �

X

s0
P(s0|s,a) V⇤(s0)

�

• Solution?

Suppose we know the parameters {R(s),P(s0|s,a), �}.
Then the above gives us n equations for n unknowns:

V⇤(s) = max
a


R(s) + �

X

s0
P(s0|s,a) V⇤(s0)

�

But how to solve these nonlinear equations for V⇤(s)?
128 / 152



Value iteration

• Idea in a nutshell

Replace the equality sign in the Bellman optimality
equation by an assignment operation:

V⇤(s) = max
a


R(s) + �

X

s0
P(s0|s,a) V⇤(s0)

�
BOE

Vnew(s)  � max
a


R(s) + �

X

s0
P(s0|s,a) Vold(s0)

�
algorithm

• Why this might work

The value function V⇤(s) is a fixed point of this iteration.
But does this iteration always converge to a valid solution?

129 / 152



Value iteration

• Idea in a nutshell

Replace the equality sign in the Bellman optimality
equation by an assignment operation:

V⇤(s) = max
a


R(s) + �

X

s0
P(s0|s,a) V⇤(s0)

�
BOE

Vnew(s)  � max
a


R(s) + �

X

s0
P(s0|s,a) Vold(s0)

�
algorithm

• Why this might work

The value function V⇤(s) is a fixed point of this iteration.
But does this iteration always converge to a valid solution?

130 / 152



Value iteration

• Idea in a nutshell

Replace the equality sign in the Bellman optimality
equation by an assignment operation:

V⇤(s) = max
a


R(s) + �

X

s0
P(s0|s,a) V⇤(s0)

�
BOE

Vnew(s)  � max
a


R(s) + �

X

s0
P(s0|s,a) Vold(s0)

�
algorithm

• Why this might work

The value function V⇤(s) is a fixed point of this iteration.
But does this iteration always converge to a valid solution?

131 / 152



Value iteration

• Idea in a nutshell

Replace the equality sign in the Bellman optimality
equation by an assignment operation:

V⇤(s) = max
a


R(s) + �

X

s0
P(s0|s,a) V⇤(s0)

�
BOE

Vnew(s)  � max
a


R(s) + �

X

s0
P(s0|s,a) Vold(s0)

�
algorithm

• Why this might work

The value function V⇤(s) is a fixed point of this iteration.
But does this iteration always converge to a valid solution?

132 / 152



Value iteration

• Idea in a nutshell

Replace the equality sign in the Bellman optimality
equation by an assignment operation:

V⇤(s) = max
a


R(s) + �

X

s0
P(s0|s,a) V⇤(s0)

�
BOE

Vnew(s)  � max
a


R(s) + �

X

s0
P(s0|s,a) Vold(s0)

�
algorithm

• Why this might work

The value function V⇤(s) is a fixed point of this iteration.
But does this iteration always converge to a valid solution?

133 / 152



Value iteration

• Idea in a nutshell

Replace the equality sign in the Bellman optimality
equation by an assignment operation:

V⇤(s) = max
a


R(s) + �

X

s0
P(s0|s,a) V⇤(s0)

�
BOE

Vnew(s)  � max
a


R(s) + �

X

s0
P(s0|s,a) Vold(s0)

�
algorithm

• Why this might work

The value function V⇤(s) is a fixed point of this iteration.
But does this iteration always converge to a valid solution?

134 / 152



Value iteration

• Idea in a nutshell

Replace the equality sign in the Bellman optimality
equation by an assignment operation:

V⇤(s) = max
a


R(s) + �

X

s0
P(s0|s,a) V⇤(s0)

�
BOE

Vnew(s)  � max
a


R(s) + �

X

s0
P(s0|s,a) Vold(s0)

�
algorithm

• Why this might work

The value function V⇤(s) is a fixed point of this iteration.

But does this iteration always converge to a valid solution?

135 / 152



Value iteration

• Idea in a nutshell

Replace the equality sign in the Bellman optimality
equation by an assignment operation:

V⇤(s) = max
a


R(s) + �

X

s0
P(s0|s,a) V⇤(s0)

�
BOE

Vnew(s)  � max
a


R(s) + �

X

s0
P(s0|s,a) Vold(s0)

�
algorithm

• Why this might work

The value function V⇤(s) is a fixed point of this iteration.
But does this iteration always converge to a valid solution?

136 / 152



Algorithm for value iteration

1. Initialize: Vo(s) = 0 for all s 2 S .

2. Iterate until convergence:

Vk+1(s) = max
a


R(s) + �

X

s0
P(s0|s,a) Vk(s0)

�
for all s 2 S.

3. Solve for optimal policy:

Qk(s,a) = R(s) + �
X

s0
P(s0|s,a) Vk(s0),

⇡⇤(s) = lim
k!1

argmax
a

Qk(s,a).

137 / 152



Algorithm for value iteration

1. Initialize: Vo(s) = 0 for all s 2 S .

2. Iterate until convergence:

Vk+1(s) = max
a


R(s) + �

X

s0
P(s0|s,a) Vk(s0)

�
for all s 2 S.

3. Solve for optimal policy:

Qk(s,a) = R(s) + �
X

s0
P(s0|s,a) Vk(s0),

⇡⇤(s) = lim
k!1

argmax
a

Qk(s,a).

138 / 152



Algorithm for value iteration

1. Initialize: Vo(s) = 0 for all s 2 S .

2. Iterate until convergence:

Vk+1(s) = max
a


R(s) + �

X

s0
P(s0|s,a) Vk(s0)

�
for all s 2 S.

3. Solve for optimal policy:

Qk(s,a) = R(s) + �
X

s0
P(s0|s,a) Vk(s0),

⇡⇤(s) = lim
k!1

argmax
a

Qk(s,a).

139 / 152



Algorithm for value iteration

1. Initialize: Vo(s) = 0 for all s 2 S .

2. Iterate until convergence:

Vk+1(s) = max
a


R(s) + �

X

s0
P(s0|s,a) Vk(s0)

�

for all s 2 S.

3. Solve for optimal policy:

Qk(s,a) = R(s) + �
X

s0
P(s0|s,a) Vk(s0),

⇡⇤(s) = lim
k!1

argmax
a

Qk(s,a).

140 / 152



Algorithm for value iteration

1. Initialize: Vo(s) = 0 for all s 2 S .

2. Iterate until convergence:

Vk+1(s) = max
a


R(s) + �

X

s0
P(s0|s,a) Vk(s0)

�
for all s 2 S.

3. Solve for optimal policy:

Qk(s,a) = R(s) + �
X

s0
P(s0|s,a) Vk(s0),

⇡⇤(s) = lim
k!1

argmax
a

Qk(s,a).

141 / 152



Algorithm for value iteration

1. Initialize: Vo(s) = 0 for all s 2 S .

2. Iterate until convergence:

Vk+1(s) = max
a


R(s) + �

X

s0
P(s0|s,a) Vk(s0)

�
for all s 2 S.

3. Solve for optimal policy:

Qk(s,a) = R(s) + �
X

s0
P(s0|s,a) Vk(s0),

⇡⇤(s) = lim
k!1

argmax
a

Qk(s,a).

142 / 152



Algorithm for value iteration

1. Initialize: Vo(s) = 0 for all s 2 S .

2. Iterate until convergence:

Vk+1(s) = max
a


R(s) + �

X

s0
P(s0|s,a) Vk(s0)

�
for all s 2 S.

3. Solve for optimal policy:

Qk(s,a) = R(s) + �
X

s0
P(s0|s,a) Vk(s0),

⇡⇤(s) = lim
k!1

argmax
a

Qk(s,a).

143 / 152



Algorithm for value iteration

1. Initialize: Vo(s) = 0 for all s 2 S .

2. Iterate until convergence:

Vk+1(s) = max
a


R(s) + �

X

s0
P(s0|s,a) Vk(s0)

�
for all s 2 S.

3. Solve for optimal policy:

Qk(s,a) = R(s) + �
X

s0
P(s0|s,a) Vk(s0),

⇡⇤(s) = lim
k!1

argmax
a

Qk(s,a).

144 / 152



Value iteration (VI) versus policy iteration (PI)

• Compare and contrast:

PI searches through the combinatorial space of policies.
VI searches through the continuous space of value
functions.

• Convergence:

PI converges in a finite number of steps.
VI converges asymptotically (in the limit).

145 / 152



Value iteration (VI) versus policy iteration (PI)

• Compare and contrast:

PI searches through the combinatorial space of policies.
VI searches through the continuous space of value
functions.

• Convergence:

PI converges in a finite number of steps.
VI converges asymptotically (in the limit).

146 / 152



Value iteration (VI) versus policy iteration (PI)

• Compare and contrast:

PI searches through the combinatorial space of policies.

VI searches through the continuous space of value
functions.

• Convergence:

PI converges in a finite number of steps.
VI converges asymptotically (in the limit).

147 / 152



Value iteration (VI) versus policy iteration (PI)

• Compare and contrast:

PI searches through the combinatorial space of policies.
VI searches through the continuous space of value
functions.

• Convergence:

PI converges in a finite number of steps.
VI converges asymptotically (in the limit).

148 / 152



Value iteration (VI) versus policy iteration (PI)

• Compare and contrast:

PI searches through the combinatorial space of policies.
VI searches through the continuous space of value
functions.

• Convergence:

PI converges in a finite number of steps.
VI converges asymptotically (in the limit).

149 / 152



Value iteration (VI) versus policy iteration (PI)

• Compare and contrast:

PI searches through the combinatorial space of policies.
VI searches through the continuous space of value
functions.

• Convergence:

PI converges in a finite number of steps.

VI converges asymptotically (in the limit).

150 / 152



Value iteration (VI) versus policy iteration (PI)

• Compare and contrast:

PI searches through the combinatorial space of policies.
VI searches through the continuous space of value
functions.

• Convergence:

PI converges in a finite number of steps.
VI converges asymptotically (in the limit).

151 / 152



That’s all folks!

152 / 152


