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Review



Value Functions

• State Value Function

V⇡(s) = E⇡

" 1X

t=0
�tR(st)

���� s0=s
#

= R(s) + �
X

s0
P(s0|s,⇡(s)) V⇡(s0)

• Action Value Function

Q⇡(s,a) = E⇡

" 1X

t=0
�tR(st)

���� s0=s,a0=a
#

= R(s) + �
X

s0
P(s0|s,a) V⇡(s0)
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Optimality

• Goal

Find the optimal policy given the environment that the
agent is in.

• Planning

If reward function and transition probabilities are known.

• Reinforcement Learning
If reward function and transition probabilities are
unknown.
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Optimality

There exists at most one policy ⇡⇤ such that V⇡⇤
(s) � V⇡(s) for

all policies ⇡ and states s of the MDP.

True (A) or False (B)?
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Optimality

Optimal value functions, Q⇤(s,a) and V⇤(s) are unique and all
optimal policies share the same value functions.

True (A) or False (B)?
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Optimality

• Theorem

There exists at least one policy ⇡⇤ (and perhaps many) such
that V⇡⇤

(s) � V⇡(s) for all policies ⇡ and states s of the MDP.

• Notation

V⇤(s) = V⇡⇤
(s)

Q⇤(s,a) = Q⇡⇤
(s,a)

These optimal value functions are unique.
(All optimal policies share the same value functions.)
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Optimality

We can get the optimal policy ⇡⇤ from the optimal value
function V⇤(s) but not from the optimal action value function
Q⇤(s,a).

True (A) or False (B)?

9 / 152



Relations at optimality

• From the optimal action value function:

V⇤(s) = max
a

⇥
Q⇤(s,a)

⇤

⇡⇤(s) = argmax
a


Q⇤(s,a)

�

• From the optimal state value function:

Q⇤(s,a) = R(s) + �
X

s0
P(s0|s,a)V⇤(s0)

⇡⇤(s) = argmax
a

h
R(s) + �

X
s0
P(s0|s,a)V⇤(s0)

i

• Why are these relations useful?

Sometimes it can be easier to estimate Q⇤(s,a) or V⇤(s)
(which are continuous) than to learn ⇡⇤(s) (which is discrete).
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Planning in MDPs

Given a complete model of the agent and its environment
as a Markov decision process, namely

MDP = {S,A,P(s0|s,a),R(s), �},

how can we efficiently compute (i.e., in time polynomial in the
number of states) any of the following:

1. an optimal policy ⇡⇤(s)?
2. the optimal state value function V⇤(s)?
3. the optimal action value function Q⇤(s,a)?

This is the problem of planning in MDPs.
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Policy Based



Algorithms

1. Policy evaluation

How to compute V⇡(s) for some fixed policy ⇡?

2. Policy improvement

How to compute a policy ⇡0 such that V⇡0
(s) � V⇡(s)?

3. Policy iteration

How to compute an optimal policy ⇡⇤(s)?
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Policy evaluation

• How to compute the state value function?

V⇡(s) = E⇡

" 1X

t=0
�tR(st)

���� s0=s
#

• Bellman equation:

V⇡(s) = R(s) + �
X

s0
P(s0|s,⇡(s))V⇡(s0)

• Solve linear system: There are n equations for n
unknowns (where s = 1, 2, . . . ,n).
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Solving the linear system (con’t)

• Solution
R =


I� �P⇡

�
V⇡ =) V⇡ = (I� �P⇡)�1| {z }

matrix inverse

R

• Complexity

It takes O(n3) operations to solve this system of equations.
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Policy improvement

• Problem statement

Given a policy ⇡ and its state value function V⇡(s),
how to compute a policy ⇡0 such that

V⇡0
(s) � V⇡(s) for all states s?

• Definition

Given the action value function Q⇡(s,a) for policy ⇡, we
define the greedy policy ⇡0 by

⇡0(s) = argmax
a


Q⇡(s,a)

�
.
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Greedy policies

• In terms of the state value function:

⇡0(s) = argmax
a


Q⇡(s,a)

�

= argmax
a

h
R(s) + �

X
s0
P(s0|s,a) V⇡(s0)

i

= argmax
a

hX
s0
P(s0|s,a) V⇡(s0)

i

• Test your understanding:
⇡0(s) = ⇡(s) for some s 2 S? not necessarily

⇡0(s) 6= ⇡(s) for some s 2 S? not necessarily

Q⇡(s,⇡0(s)) � Q⇡(s,⇡(s)) for all s 2 S? TRUE
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Policy improvement

• Greedy policy:
⇡0(s) = argmax

a
Q⇡(s,a)

• Theorem:
The greedy policy ⇡0(s) = argmaxa Q⇡(s,a) improves
everywhere on the policy ⇡ from which it was derived:

V⇡0
(s) � V⇡(s) for all states s 2 S

• Intuition:
If it’s better to choose action a in state s before following
⇡, then it’s always better to make this choice.

• Proof idea:
We’ll prove a key inequality for one-step deviations from ⇡,
then we’ll extend this inequality by an iterative argument.
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Proof — 1. Deriving the inequality

• Comparing value functions:

V⇡(s) = Q⇡(s,⇡(s))
 max

a
Q⇡(s,a)

= Q⇡(s,⇡0(s))
= R(s) + �

X

s0
P(s0|s,⇡0(s))V⇡(s0)

• Combining these steps:

V⇡(s)  R(s) + �
X

s0
P(s0|s,⇡0(s))V⇡(s0)

• Intuition:

It is better to take one step under ⇡0, then revert to ⇡,
than to always follow ⇡.
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Proof — 2. Leveraging the inequality

• One-step inequality:

V⇡(s)  R(s) + �
X

s0
P(s0|s,⇡0(s))V⇡(s0)

What happens if we plug this inequality into itself?
Then we obtain ...

• Two-step inequality:
V⇡(s)  R(s)+ �

X

s0
P(s0|s,⇡0(s))

"
R(s0) + �

X

s00
P(s00|s0,⇡0(s0))V⇡(s00)

#

• Intuition:

It is better to take two steps under ⇡0, then revert to ⇡,
than to always follow ⇡.
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Proof — 3. Taking the limit

• Two-step inequality:
V⇡(s)  R(s)+ �

X

s0
P(s0|s,⇡0(s))

"
R(s0) + �

X

s00
P(s00|s0,⇡0(s0))V⇡(s00)

#

• Apply the inequality t times:

It is better to take t steps under ⇡0, then revert to ⇡,
than to always follow ⇡. Last term is of order O(�t).

• Take the limit t ! 1:

It is better to follow ⇡0 (always) than to follow ⇡ (always).
Conclude that V⇡(s)  V⇡0

(s) for all states s 2 S .
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Policy iteration

How to compute ⇡⇤?

1. Choose an initial policy ⇡ : S ! A.

2. Repeat until convergence:

Compute the action value function Q⇡(s,a).
Compute the greedy policy ⇡0(s) = argmaxa Q⇡(s,a).
Replace ⇡ by ⇡0.

⇡0
evaluate
����! V⇡0 (s)

Q⇡0 (s, a)
improve
����! ⇡1

evaluate
����! V⇡1 (s)

Q⇡1 (s, a)
improve
����! · · ·

Policy iteration is guaranteed to terminate.

True (A) or False (B)?
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Policy iteration

• How to compute ⇡⇤?

⇡0
evaluate

������! V⇡0(s)
Q⇡0(s,a)

improve
������! ⇡1

evaluate
������! · · ·

This process is guaranteed to terminate.
But does it converge to an optimal policy?

• Theorem

If ⇡0(s) = argmaxa Q⇡(s,a) and V⇡0
(s) = V⇡(s) for all s 2 S ,

then V⇡(s) = V⇤(s) for all s 2 S .

• Proof idea

Prove a key equality/inequality for terminal/non-terminal
policies; iterate t times, then compare the limits as t ! 1.
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Proof — 1. Bellman optimality equation

• Suppose policy iteration converges to ⇡0.

V⇡0
(s) = R(s) + �

X

s0
P(s0|s,⇡0(s))V⇡0

(s0) Bellman equation

V⇡(s) = R(s) + �
X

s0
P(s0|s,⇡0(s))V⇡(s0) at convergence

Now exploit that ⇡0 is greedy with respect to ⇡ ...

• Bellman optimality equation

V⇡(s) = R(s) + �max
a

X

s0
P(s0|s,a)V⇡(s0)

These equations are nonlinear due to the max operation.
There are n equations for n unknowns (where s = 1, 2, . . . ,n).
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These equations are nonlinear due to the max operation.
There are n equations for n unknowns (where s = 1, 2, . . . ,n).
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Proof — 2. Inequality

• Let ⇡̃ be any policy of the MDP:

V⇡̃(s) = R(s) + �
X

s0
P(s0|s, ⇡̃(s))V⇡̃(s0) Bellman equation

V⇡̃(s)  R(s) + �max
a

X

s0
P(s0|s, a)V⇡̃(s0) greedy

• Compare to Bellman optimality equation (BOE):

V⇡(s) = R(s) + � max
a

X

s0
P(s0|s, a))V⇡(s0)

• Understanding the difference:

The inequality holds for any policy ⇡̃ of the MDP.
The BOE only holds for a solution ⇡ from policy iteration.
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Proof — 3. Taking the limit

• Iterating the inequality:
V⇡̃(s)  R(s) + �max

a

X
s0
P(s0|s, a)V⇡̃(s0)

 R(s) + �max
a

X
s0
P(s0|s, a)


R(s0) + �max

a0

X
s00
P(s00|s0, a0)V⇡̃(s00)

�

• Iterating the BOE:
V⇡(s) = R(s) + �max

a

X
s0
P(s0|s, a)V⇡(s0)

= R(s) + �max
a

X
s0
P(s0|s, a)


R(s0) + �max

a0

X
s00
P(s00|s0, a0)V⇡(s00)

�

• Iterating t times:

Both right sides agree up to term of order �t.
Taking the limit t ! 1, we find V⇡̃(s)  V⇡(s) for all s 2 S .

Since ⇡̃ is arbitrary, we conclude that ⇡ is optimal .
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Value Iteration



Motivation

• How policy iteration works:

It searches directly (and quite efficiently) through the
combinatorially large space of policies in the MDP.

• Is there another way?

Given an MDP = {S,A,P(s0|s,a),R(s), �}, recall how its
optimal policies and value functions are connected:

⇡⇤(s) = argmax
a


Q⇤(s,a)

�

= argmax
a


R(s) + �

X

s0
P(s0|s,a) V⇤(s0)

�

So if we can directly compute the optimal value function V⇤(s),
then we can use it to derive an optimal policy ⇡⇤.
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Bellman optimality equation

• Derivation:

V⇤(s) = max
a


Q⇤(s,a)

�

= max
a


R(s) + �

X

s0
P(s0|s,a) V⇤(s0)

�

• Solution?

Suppose we know the parameters {R(s),P(s0|s,a), �}.
Then the above gives us n equations for n unknowns:

V⇤(s) = max
a


R(s) + �

X

s0
P(s0|s,a) V⇤(s0)

�

But how to solve these nonlinear equations for V⇤(s)?
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Value iteration

• Idea in a nutshell

Replace the equality sign in the Bellman optimality
equation by an assignment operation:

V⇤(s) = max
a


R(s) + �

X

s0
P(s0|s,a) V⇤(s0)

�
BOE

Vnew(s)  � max
a


R(s) + �

X

s0
P(s0|s,a) Vold(s0)

�
algorithm

• Why this might work

The value function V⇤(s) is a fixed point of this iteration.
But does this iteration always converge to a valid solution?
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Algorithm for value iteration

1. Initialize: Vo(s) = 0 for all s 2 S .

2. Iterate until convergence:

Vk+1(s) = max
a


R(s) + �

X

s0
P(s0|s,a) Vk(s0)

�
for all s 2 S.

3. Solve for optimal policy:

Qk(s,a) = R(s) + �
X

s0
P(s0|s,a) Vk(s0),

⇡⇤(s) = lim
k!1

argmax
a

Qk(s,a).
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Value iteration (VI) versus policy iteration (PI)

• Compare and contrast:

PI searches through the combinatorial space of policies.
VI searches through the continuous space of value
functions.

• Convergence:

PI converges in a finite number of steps.
VI converges asymptotically (in the limit).

145 / 152



Value iteration (VI) versus policy iteration (PI)

• Compare and contrast:

PI searches through the combinatorial space of policies.
VI searches through the continuous space of value
functions.

• Convergence:

PI converges in a finite number of steps.
VI converges asymptotically (in the limit).

146 / 152



Value iteration (VI) versus policy iteration (PI)

• Compare and contrast:

PI searches through the combinatorial space of policies.

VI searches through the continuous space of value
functions.

• Convergence:

PI converges in a finite number of steps.
VI converges asymptotically (in the limit).

147 / 152



Value iteration (VI) versus policy iteration (PI)

• Compare and contrast:

PI searches through the combinatorial space of policies.
VI searches through the continuous space of value
functions.

• Convergence:

PI converges in a finite number of steps.
VI converges asymptotically (in the limit).

148 / 152



Value iteration (VI) versus policy iteration (PI)

• Compare and contrast:

PI searches through the combinatorial space of policies.
VI searches through the continuous space of value
functions.

• Convergence:

PI converges in a finite number of steps.
VI converges asymptotically (in the limit).

149 / 152



Value iteration (VI) versus policy iteration (PI)

• Compare and contrast:

PI searches through the combinatorial space of policies.
VI searches through the continuous space of value
functions.

• Convergence:

PI converges in a finite number of steps.

VI converges asymptotically (in the limit).

150 / 152



Value iteration (VI) versus policy iteration (PI)

• Compare and contrast:

PI searches through the combinatorial space of policies.
VI searches through the continuous space of value
functions.

• Convergence:

PI converges in a finite number of steps.
VI converges asymptotically (in the limit).

151 / 152



That’s all folks!
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