CSE 150A-250A Al: Probabilistic Models

Lecture 16

Fall 2025

Trevor Bonjour

Department of Computer Science and Engineering
University of California, San Diego

Slides adapted from previous versions of the course (Prof. Lawrence, Prof. Alvarado, Prof Berg-Kirkpatrick)

1/152

Review

Policy Based
Policy Evaluation
Policy Improvement

Policy Iteration

Value Iteration

2/152

Review

Value Functions
> A'R(st)

- State Value Function
So :S]
t=0

= R(S) + 7)_P(SIs.m(s)) V7 (S")

Vi(s) = ET

- Action Value Function

> A'R(st)

t=0
= R(s) + 7Y _P(s'|s,a)V7(s')

Q"(s,a) = ET

So=S, 00:(]]

4152

Optimality

- Goal

Find the optimal policy given the environment that the
agentisin.

- Planning

If reward function and transition probabilities are known.

- Reinforcement Learning
If reward function and transition probabilities are
unknown.

5/152

Optimality

79

There exists at most one policyjr_* such that V™'(s) > V7 (s) for
all policies = and states s of the MDP.

True (A) or False (B)?

6/152

Optimality

Optimal value functions, Q*(s,a) and V*(s) are unique and all
optimal policies share the same value functions.

Trle (A) or False (B)?

71152

Optimality

- Theorem

There exists at least one policy 7* (and perhaps many) such
that V7 (s) > V7(s) for all policies = and states s of the MDP.

- Notation
Vi(s) = VT (s)
Q*(s,a) = Q" (s,q)

These optimal value functions are unique.
(All optimal policies share the same value functions.)

8/152

Optimality

We can get the optimal policy #* from the optimal value
function V*(s) but not from the optimal action value function
Q*(s,a).

True (A) or False (B)?

9/152

Relations at optimality

- From the optimal action value function:
V¥(s) = max[Q*(s,q)]
m*(s) = argmax [Q*(S7 a)]
- From the optimal state value function:

Q*(s,a) = +wz (s'ls, a)V*(s")

m*(s) = arg’max[+ ’yz (s'[s, a)V*(s")
- Why are these relations useful?

Sometimes it can be easier to estimate Q*(s, a) or V*(s)
(which are continuous) than to learn 7*(s) (which is discrete).

10 /152

Planning in MDPs

Given a complete model of the agent and its environment
as a Markov decision process, namely

MDP = {S,A,P(s'ls,a),R(S), 7},

how can we efficiently compute (i.e., in time polynomial in the
number of states) any of the following:

1. an optimal policy 7*(s)?
2. the optimal state value function V*(s)?

3. the optimal action value function Q*(s,a)?

This is the problem of planning in MDPS.‘

1/152

Policy Based

Algorithms

1. Policy evaluation

How to compute V7™(s) for some fixed policy 7?

2. Policy improvement

How to compute a policy 7’ such that V™' (s) > V7(s)?

3. Policy iteration

How to compute an optimal policy 7*(s)?

13 /152

Policy evaluation

- How to compute the state value function?

Vi(s) = EF [me(st)

t=0

SO_S] Rls,S o)

- Bellman equation:
VT(s) = R(s) + 7D P(sls, m(s))V"(s)
S/

- Solve linear system: There are n equations for n
unknowns (where s =1,2,...,n).

14 /152

Solving the linear system (con't)

- Solution

R = [l - ’yP”} VT = VT = (- ’yP’r)_1 R
~—_———
- Complexity matrix inverse

It takes O(n?) operations to solve this system of equations.

15 /152

Policy improvement

- Problem statement

Given a policy w and its state value function V7(s),
how to compute a policy 7’ such that

!

VT(s) > V™(s) forall states s?

- Definition

Given the action value function Q™(s, a) for policy =, we
define the greedy policy 7’ by

7'(s) = argmax [Q’r(s,a)].

acktow NS T

—_ 16 /152

Greedy policies

- In terms of the state value function:

7'(s) = argmax Q”(S,a)}
= arg(gnax —I—WZ (s'|s,a) V™ (s)}
= argmax _ZS, (s']s,a) V(s)}

- Test your understanding:

7'(s) = w(s) for some s € §? not necessarily
7'(s) # w(s) for some s € §? not necessarily

Q™(s,7'(s)) > Q"(s,n(s)) foralls e S? TRUE

17 /152

Policy improvement

18 /152

Policy improvement

- Greedy policy:

19 /152

Policy improvement

- Greedy policy:

7'(s) = argmax Q"(s,a)

20 /152

Policy improvement

- Greedy policy:

7'(s) = argmax Q"(s,a)

- Theorem:
The greedy policy 7/(s) = arg maxq Q™ (S, a) improves
everywhere on the policy « from which it was derived:

21/152

Policy improvement

- Greedy policy:
7'(s) = argmax Q"(s,a)
- Theorem:

The greedy policy 7/(s) = arg maxq Q™ (S, a) improves
everywhere on the policy = from which it was derived:

V™ (s) >V7(s) forallstatesseS

22 /152

Policy improvement

- Greedy policy:
7'(s) = argmax Q"(s,a)

- Theorem:
The greedy policy 7/(s) = arg maxq Q™ (S, a) improves
everywhere on the policy = from which it was derived:

V™ (s) >V7(s) forallstatesseS

« Intuition:

23 /152

Policy improvement

- Greedy policy:
7'(s) = argmax Q"(s,a)
- Theorem:

The greedy policy 7/(s) = arg maxq Q™ (S, a) improves
everywhere on the policy = from which it was derived:

V™ (s) >V7(s) forallstatesseS

« Intuition:

If it's better to choose action a in state s before following
m, then it's always better to make this choice.

24 [152

Policy improvement

- Greedy policy:

7'(s) = argmax Q"(s,a)

- Theorem:
The greedy policy 7/(s) = arg maxq Q™ (S, a) improves
everywhere on the policy = from which it was derived:

V™ (s) >V7(s) forallstatesseS

- Intuition:
If it's better to choose action a in state s before following
m, then it's always better to make this choice.

- Proof idea:
We'll prove a key inequality for one-step deviations from m,

then we'll extend this inequality by an iterative argument.
25/152

Proof — 1. Deriving the inequality

26 /152

Proof — 1. Deriving the inequality

- Comparing value functions:

27 [152

Proof — 1. Deriving the inequality

- Comparing value functions:el o TN thak romes
VTI'(S) _ QW(S,T['(S)) %“'O’VV\ ’n—

28 /152

Proof — 1. Deriving the inequality

- Comparing value functions:

Vi(s) = Q7(s,m(s))
< mg]xQ"(S,a)

29 /152

Proof — 1. Deriving the inequality

- Comparing value functions:
Vi(s) = Q%(s,7(s))
< mg]xQ"(S,a)

= Q"(s,7(9))

—

30 /152

Proof — 1. Deriving the inequality

- Comparing value functions:

Vi(s) = Q7(s,m(s))
< mg]xQ"(S,a)

= (s)s)) T
— R(s)+1 3 P(s]s. 7 (s)EXs))

31/152

Proof — 1. Deriving the inequality

- Comparing value functions:

Vi(s) = Q7(s,m(s))
< mg]xQ"(S,a)

= Q7(s,7(s))
= R(s)+7) P(s'Is,w(s)V7(s")

- Combining these steps:

32/152

Proof — 1. Deriving the inequality

- Comparing value functions:
Vi(s) = Q%(s,7(s))
< mg]xQ"(S,a)
= O”(S '(s))
= +72 (s|s, ' (s))V™(s")

- Combining these steps:

Vi(s) < R(s) + 3 P ls () V)

33 /152

Proof — 1. Deriving the inequality

- Comparing value functions:
Vi(s) = Q%(s,7(s))
< mg]xQ"(S,a)
= O”(S '(s))
= +72 (s|s, 7' (s))V™(s")

- Combining these steps:

VT(s) < R(s)+7 Y _P(s|s, 7 (s))V7(s)

- Intuition:

34 /152

Proof — 1. Deriving the inequality

- Comparing value functions:
Vi(s) = Q%(s,7(s))
< mg]xQ"(S,a)
= Q"(s,7(s))
= R(S)+7 Y P(Sls,w(s))V7(s")
>

- Combining these steps:

VT(s) < R(s)+7 Y _P(s|s, 7 (s))V7(s)

- Intuition:

It is better to take one step under 7/, then revert to ,
than to always follow .
35/152

Proof — 2. Leveraging the inequality

36 /152

Proof — 2. Leveraging the inequality

- One-step inequality:

37 /152

Proof — 2. Leveraging the inequality

- One-step inequality:
VT(s) < R(S)+7) _P(s'ls, ' (s))V"(s)

What happens if we plug this inequality into itself?

38 /152

Proof — 2. Leveraging the inequality

- One-step inequality:
VT(s) < R(S)+7) _P(s'ls, ' (s))V"(s)

What happens if we plug this inequality into itself?
Then we obtain ...

39/152

Proof — 2. Leveraging the inequality

- One-step inequality:
VT(s) < R(S)+7) _P(s'ls, ' (s))V"(s)

What happens if we plug this inequality into itself?
Then we obtain ...

- Two-step inequality:

40 /152

Proof — 2. Leveraging the inequality

- One-step inequality:

What happens if we plug this inequality into itself?
Then we obtain ...

- Two-step inequality: o 7
(

Vi(s) < R(s)+7§:P(s Is, 7' (s)) Li(s) + 1 Z P(s"|s :ﬁ))w j

41 /152

Proof — 2. Leveraging the inequality

- One-step inequality:
VT(s) < R(S)+7) _P(s'ls, ' (s))V"(s)

What happens if we plug this inequality into itself?
Then we obtain ...

- Two-step inequality:

V() < R(s)+7) _P(S'Is,m(s)) |R(s) + 7 D> P(s"[s". 7' (s)V7(s")

- Intuition:

42 /152

Proof — 2. Leveraging the inequality

- One-step inequality:
VT(s) < R(S)+7) _P(s'ls, ' (s))V"(s)

What happens if we plug this inequality into itself?
Then we obtain ...

- Two-step inequality:

V() < R(s)+7) _P(S'Is,m(s)) |R(s) + 7 D> P(s"[s". 7' (s)V7(s")

- Intuition:

It is better to take two steps under «’, then revert to ,
than to always follow .

43 /152

Proof — 3. Taking the limit

44 [152

Proof — 3. Taking the limit

- Two-step inequality:

45 /152

Proof — 3. Taking the limit

- Two-step inequality:

V7(s) < R(S)+1 ZP(5’|5,7r/(s)) [R(s/) + 1 ZP(SNS/,W/(S/))VW(SN):|

s/t

46 /152

Proof — 3. Taking the limit

- Two-step inequality:

V7(s) < R(S)+1 ZP(5’|5,7r/(s)) [R(s/) + 1 ZP(SNS/,W/(S/))VW(SN):|

s/t

- Apply the inequality t times:

47 [152

Proof — 3. Taking the limit

- Two-step inequality:
V7(s) < R(S)+1 ZP(5’|5,7r/(s)) [R(s/) + 1 ZP(SNS/,W/(S/))VW(SN):|
- Apply the inequality t times:

It is better to take t steps under «’/, then revert to m,
than to always follow 7.

48 /152

Proof — 3. Taking the limit

- Two-step inequality:
V7(s) < R(S)+1 ZP(5’|5,7r/(s)) [R(s/) + 1 ZP(SNS/,W/(S/))VW(SN):|
- Apply the inequality t times:

It is better to take t steps under «’/, then revert to m,
than to always follow 7. Last term is of order O(4").

49 [152

Proof — 3. Taking the limit

- Two-step inequality:

V7(s) < R(S)+1 ZP(5’|5,7r/(s)) [R(s/) + 1 ZP(SNS/,W/(S/))VW(SN):|

- Apply the inequality t times:
It is better to take t steps under «’/, then revert to m,

than to always follow 7. Last term is of order O(~").

- Take the limit t — oc:

50 /152

Proof — 3. Taking the limit

- Two-step inequality:
V7(s) < R(S)+1 ZP(S/|S,71'/(S)) [R(s/) + 1 ZP(SNS/,W/(S/))VW(SN):|
- Apply the inequality t times:

It is better to take t steps under «’/, then revert to m,
than to always follow 7. Last term is of order O(4").

- Take the limit t — oc:

It is better to follow 7 (always) than to follow 7 (always).

51/152

Proof — 3. Taking the limit

- Two-step inequality:
V7(s) < R(S)+1 ZP(S/|S,71'/(S)) [R(s/) + 1 ZP(SNS/,W/(S/))VW(SN):|
- Apply the inequality t times:

It is better to take t steps under «’/, then revert to m,
than to always follow 7. Last term is of order O(4").

- Take the limit t — oc:

It is better to follow 7 (always) than to follow 7 (always).
Conclude that V™(s) < V™(s) for all states s € S.

52 /152

Policy iteration

53 /152

Policy iteration

How to compute 7*?

54 /152

Policy iteration

How to compute 7*?

1. Choose an initial policy 7 : S — A.

55 /152

Policy iteration

How to compute 7*?
1. Choose an initial policy 7 : S — A.

2. Repeat until convergence:

56 /152

Policy iteration

How to compute 7*?
1. Choose an initial policy 7 : S — A.

2. Repeat until convergence:

Compute the action value function Q™(s, a). ?

57 /152

Policy iteration

How to compute 7*?
1. Choose an initial policy 7 : S — A.

2. Repeat until convergence:

Compute the action value function Q™(s, a).
Compute the greedy policy 7'(s) = argmaxq Q7 (s, a).

58 /152

Policy iteration

How to compute 7*?
1. Choose an initial policy 7 : S — A.

2. Repeat until convergence:

Compute the action value function Q™(s, a).
Compute the greedy policy 7'(s) = argmaxq Q7 (s, a).
Replace 7 by 7.

59 /152

Policy iteration

How to compute 7*?
1. Choose an initial policy 7 : S — A.

2. Repeat until convergence:

Compute the action value function Q™(s, a).
Compute the greedy policy 7'(s) = argmaxq Q7 (s, a).
Replace 7 by 7.

0

60 /152

Policy iteration

How to compute 7*?
1. Choose an initial policy 7 : S — A.

2. Repeat until convergence:

Compute the action value function Q™(s, a).
Compute the greedy policy 7'(s) = argmaxq Q7 (s, a).
Replace 7 by 7.

evaluate
) —_—

61/152

Policy iteration

How to compute 7*?
1. Choose an initial policy 7 : S — A.

2. Repeat until convergence:

Compute the action value function Q™(s, a).
Compute the greedy policy 7'(s) = argmaxq Q7 (s, a).
Replace 7 by 7.

evaluate V7o (s)
) —_—

62 /152

Policy iteration

How to compute 7*?
1. Choose an initial policy 7 : S — A.

2. Repeat until convergence:
Compute the action value function Q™(s, a).
Compute the greedy policy 7'(s) = argmaxq Q7 (s, a).
Replace 7 by 7.

evaluate V7o (s)

Q™o(s,a)

0

63 /152

Policy iteration

How to compute 7*?
1. Choose an initial policy 7 : S — A.

2. Repeat until convergence:

Compute the action value function Q™(s, a).
Compute the greedy policy 7'(s) = argmaxq Q7 (s, a).
Replace 7 by 7.

evaluate V™o (s) improve

Q™o(s,a)

0

64 /152

Policy iteration

How to compute 7*?
1. Choose an initial policy 7 : S — A.

2. Repeat until convergence:

Compute the action value function Q™(s, a).
Compute the greedy policy 7'(s) = argmaxq Q7 (s, a).
Replace 7 by 7.

evaluate V™o (s) improve evaluate

—
o Q™ (s, a) B

65 /152

Policy iteration

How to compute 7*?
1. Choose an initial policy 7 : S — A.

2. Repeat until convergence:

Compute the action value function Q™(s, a).
Compute the greedy policy 7'(s) = argmaxq Q7 (s, a).
Replace 7 by 7.

evaluate V7o (s) improve evaluate V™i(s)
E—

—
o Q™ (s, a) B

66 /152

Policy iteration

How to compute 7*?
1. Choose an initial policy 7 : S — A.

2. Repeat until convergence:

Compute the action value function Q™(s, a).
Compute the greedy policy 7'(s) = argmaxq Q7 (s, a).
Replace 7 by 7.

evaluate V™o (s) improve evaluate Vi
sl —_—

1
Q”O(S,G) Qm(

0

67 /152

Policy iteration

How to compute 7*?
1. Choose an initial policy 7 : S — A.

2. Repeat until convergence:

Compute the action value function Q™(s, a).
Compute the greedy policy 7'(s) = argmaxq Q7 (s, a).
Replace 7 by 7.

evaluate V™o (s) improve evaluate Vi
sl —_—

1
Q”O(S,G) Qm(

improve
)

68 /152

Policy iteration

How to compute 7*?
1. Choose an initial policy 7 : S — A.

2. Repeat until convergence:

Compute the action value function Q™(s, a).
Compute the greedy policy 7'(s) = argmaxq Q7 (s, a).
Replace 7 by 7/

evaluate improve evaluate
) —_— - —_— sl
Q™(s, a)

improve

vr(s)
Q™ (s, a)

Policy iteration is guaranteed to terminate.

True (A) or False (B)?

69 /152

Policy iteration

70 /152

Policy iteration

- How to compute 7*?

71/152

Policy iteration

- How to compute 7*?

evaluate V™o(s) improve evaluate

—> o
o Q™ (s, a) i

72 [152

Policy iteration

- How to compute 7*?

evaluate V™o(s) improve evaluate

—> o
o Q™ (s, a) i

This process is guaranteed to terminate.

73 /152

Policy iteration

- How to compute 7*?

evaluate V™o(s) improve evaluate

—> o
o Q™ (s, a) i

This process is guaranteed to terminate.
But does it converge to an optimal policy?

74 [152

Policy iteration

- How to compute 7*?

evaluate V™o(s) improve evaluate

—> o
o Q™ (s, a) i

This process is guaranteed to terminate.
But does it converge to an optimal policy?

+ Theorem

75 /152

Policy iteration

- How to compute 7*?

evaluate V™o(s) improve evaluate

—> —> o
o Q™ (s, a) i

This process is guaranteed to terminate.
But does it converge to an optimal policy?

+ Theorem

If 7/(s) = arg maxq Q(s,a) and V™'(s) = V7(s) forall s € S,

76 /152

Policy iteration

- How to compute 7*?

evaluate V™o(s) improve evaluate
Ty — _ M — -
Q™ (s,a)

This process is guaranteed to terminate.
But does it converge to an optimal policy?

+ Theorem

If 7/(s) = arg maxq Q(s,a) and V™'(s) = V7(s) forall s € S,
then V7(s) = V*(s) forall s € S.

77 /152

Policy iteration

- How to compute 7*?

evaluate V™o(s) improve evaluate

—> o
o Q™ (s, a) i

This process is guaranteed to terminate.
But does it converge to an optimal policy?

+ Theorem

If 7/(s) = arg maxq Q(s,a) and V™'(s) = V7(s) forall s € S,
then V7(s) = V*(s) forall s € S.

- Proof idea

78 [152

Policy iteration

- How to compute 7*?

evaluate V™o(s) improve evaluate

—> o
o Q™ (s, a) i

This process is guaranteed to terminate.
But does it converge to an optimal policy?

- Theorem
If 7/(s) = arg maxq Q(s,a) and V™'(s) = V7(s) forall s € S,
then V7(s) = V*(s) forall s € S.

- Proof idea

Prove a key equality/inequality for terminal/non-terminal
policies;

79 /152

Policy iteration

- How to compute 7*?

evaluate V™o(s) improve evaluate

—> o
o Q™ (s, a) i

This process is guaranteed to terminate.
But does it converge to an optimal policy?

- Theorem
If 7/(s) = arg maxq Q(s,a) and V™'(s) = V7(s) forall s € S,
then V7(s) = V*(s) forall s € S.

- Proof idea

Prove a key equality/inequality for terminal/non-terminal
policies; iterate t times, then compare the limits as t — oc.

80 /152

Proof — 1. Bellman optimality equation

81/152

Proof — 1. Bellman optimality equation

- Suppose policy iteration converges to 7.

82 /152

Proof — 1. Bellman optimality equation

- Suppose policy iteration converges to 7.

V(s) = R(s)+ D P(s'ls,7(s))V" () |Bellman equation]|

83 /152

Proof — 1. Bellman optimality equation

- Suppose policy iteration converges to 7.

V(s) = R(s)+ D P(s'ls,7(s))V" () |Bellman equation]|

R(s) + 73 P(S'ls 7 (9)V7(S")
s/

V7(s)

84 /152

Proof — 1. Bellman optimality equation

- Suppose policy iteration converges to 7.

V(s) = R(s)+ D P(s'ls,7(s))V" () |Bellman equation]|

R(s) + 73 P(S'ls 7 (9)V7(S")
s/

Now exploit that " is greedy with respect to = ...

V7(s)

85 /152

Proof — 1. Bellman optimality equation

- Suppose policy iteration converges to 7.

V(s) = R(s)+ D P(s'ls,7(s))V" () |Bellman equation]|

R(s) + 73 P(S'ls 7 (9)V7(S")
s/

Now exploit that " is greedy with respect to = ...

V7(s)

- Bellman optimality equation

86 /152

Proof — 1. Bellman optimality equation

- Suppose policy iteration converges to 7.

V(s) = R(s)+ D P(s'ls,7(s))V" () |Bellman equation]|

R(s) + 73 P(S'ls 7 (9)V7(S")
s/

Now exploit that " is greedy with respect to = ...

V7(s)

- Bellman optimality equation

V™(s) = R(s) + ymﬁngP(sﬂs, a)V™(s')

X

87 /152

Proof — 1. Bellman optimality equation

- Suppose policy iteration converges to 7.

V(s) = R(s)+ D P(s'ls,7(s))V" () |Bellman equation]|

R(s) + 73 P(S'ls 7 (9)V7(S")
s/

Now exploit that " is greedy with respect to = ...

V7(s)

- Bellman optimality equation

V™(s) = R(s) + ymﬁngP(sﬂs, a)V™(s')

X

These equations are nonlinear due to the max operation.

88 /152

Proof — 1. Bellman optimality equation

- Suppose policy iteration converges to 7.

V(s) = R(s) + VZ P(s'|s, 7 (s))V" (s") ’ Bellman equation ‘

R(s) + 73 P(S'ls 7 (9)V7(S")
s/

Now exploit that " is greedy with respect to = ...

V7(s)

- Bellman optimality equation

V™(s) = R(s) + ’ymﬁaxZP(SﬂS, a)V™(s')

X

These equations are nonlinear due to the max operation.
There are n equations for n unknowns (where s =1,2,...,n).

89 /152

Proof — 2. Inequality

90 /152

Proof — 2. Inequality

- Let 7 be any policy of the MDP:

91/152

Proof — 2. Inequality

- Let 7 be any policy of the MDP:

Vi(s) = R(s) + > _P(s'ls, #(s))V"(s") ’ Bellman equation

92 /152

Proof — 2. Inequality

- Let 7 be any policy of the MDP:

Vi(s) = R(s) + > _P(s'ls, #(s))V"(s") ’ Bellman equation‘

VA (s) R(s) + ymax >~ P(s'[s,a)V"(s)

93 /152

Proof — 2. Inequality

- Let 7 be any policy of the MDP:

Vi(s) = R(s) + > _P(s'ls, #(s))V"(s") ’ Bellman equation‘
Vi) < R(s) + ymax Y P(s'ls, a)V*(s)

- Compare to Bellman optimality equation (BOE):

94 /152

Proof — 2. Inequality

- Let 7 be any policy of the MDP:

Vi(s) = R(s) + > _P(s'ls, #(s))V"(s") ’ Bellman equation‘
Vi) < R(s) + ymax Y P(s'ls, a)V*(s)

- Compare to Bellman optimality equation (BOE):

VT (s) R(s) + v muaxz P(s'|s,a))V™(s")

s/

95 /152

Proof — 2. Inequality

- Let 7 be any policy of the MDP:

Vi(s) = R(s) + > _P(s'ls, #(s))V"(s") ’ Bellman equation ‘
Vi) < R(s) + ymax Y P(s'ls, a)V*(s)
- Compare to Bellman optimality equation (BOE):

VT (s) R(s) + v muaxz P(s'|s,a))V™(s")

s/

- Understanding the difference:

96 /152

Proof — 2. Inequality

- Let 7 be any policy of the MDP:

Vi(s) = R(s) + > _P(s'ls, #(s))V"(s") ’ Bellman equation‘
Vi) < R(s) + ymax Y P(s'ls, a)V*(s)

- Compare to Bellman optimality equation (BOE):

VT (s) R(s) + v muaxz P(s'|s,a))V™(s")

s/

- Understanding the difference:

The inequality holds for any policy 7 of the MDP.

97 [152

Proof — 2. Inequality

- Let 7 be any policy of the MDP:

Vi(s) = R(s) + > _P(s'ls, #(s))V"(s") ’ Bellman equation‘
Vi) < R(s) + ymax Y P(s'ls, a)V*(s)

- Compare to Bellman optimality equation (BOE):

VT (s) R(s) + v muaxz P(s'|s,a))V™(s")

s/

- Understanding the difference:

The inequality holds for any policy 7 of the MDP.
The BOE only holds for a solution « from policy iteration.

98 /152

Proof — 3. Taking the limit

99 /152

Proof — 3. Taking the limit

- Iterating the inequality:

100 /152

Proof — 3. Taking the limit

- Iterating the inequality:

VE(s) < R(s) + wmgxzslP(s’ls,a)V’”’(s’)

101/ 152

Proof — 3. Taking the limit

- Iterating the inequality:
VE(s) < R(s) + wmgxzslP(s’ls,a)V’”’(s’)

< R(s) +’ymaaxZS/P(s'|s7a)[) + ,maxz (s"|s", a7 (s)}

102 /152

Proof — 3. Taking the limit

- Iterating the inequality:
VA(s) < R(s) + wmgxzs/P(s’ls,a)V’”’(s’)

< R(S)—i—vmaaxZS/P(s'|S7a){ +wmaxz (s"|s", a7 (s)}

- Iterating the BOE:

103 /152

Proof — 3. Taking the limit

- Iterating the inequality:
VA(s) < R(s) + wmgxzs/P(s’ls,a)V’”’(s’)

< R(S)—i—vmaaxZS/P(s'|S7a){ +wmaxz (s"|s", a7 (s)}

- Iterating the BOE:
VT(s) = R(s) + v mfxzs,P(5'|Sva)V”(s/)

104 /152

Proof — 3. Taking the limit

- Iterating the inequality:
VA(s) < R(s) + wmgxzs/P(s’ls,a)V’”’(s’)

< R(S)—i—vmaaxZS/P(s'|S7a){ +wmaxz (s"|s", a7 (s)}

- Iterating the BOE:
VT(s) = R(s) + v mfxzs,P(5'|Sva)V”(s/)
= R(s) + vmaaxZS/P(s’b,a) [) 4+~ maxz P(s"|s", ')V (s)}

105 /152

Proof — 3. Taking the limit

- Iterating the inequality:
VA(s) < R(s) + wmgxzs/P(s’ls,a)V’”’(s’)

< R(S)—i—vmaaxZS/P(s'|S7a){ +wmaxz (s"|s", a7 (s)}

- Iterating the BOE:
VT(s) = R(s) + v mfxzs,P(5'|Sva)V”(s/)

R(s) + ymax)y P(s'|s,a) |R([)+ maxz P(s”|s", a" V7 (s’)}

- Iterating t times:

106 /152

Proof — 3. Taking the limit

- Iterating the inequality:
VA(s) < R(s) + wmgxzs/P(s’ls,a)V’”’(s’)

< R(S)—i—vmaaxZS/P(s'|S7a){ +wmaxz (s"|s", a7 (s)}

- Iterating the BOE:
VT(s) = R(s) + v mfxzs,P(5'|Sva)V”(s/)

R(s) + ymax)y P(s'|s,a) |R([)+ maxz P(s”|s", a" V7 (s’)}

- Iterating t times:

Both right sides agree up to term of order ~'.

107 / 152

Proof — 3. Taking the limit

- Iterating the inequality:
VA(s) < R(s) + wmgxzs/P(s’ls,a)V’”’(s’)

< R(S)—i—vmaaxZS/P(s'|S7a){ +wmaxz (s"|s", a7 (s)}

- Iterating the BOE:
VT(s) = R(s) + v mfxzs,P(5'|Sva)V”(s/)

R(s) + ymax)y P(s'|s,a) |R([)+ maxz P(s”|s", a" V7 (s’)}

- Iterating t times:

Both right sides agree up to term of order ~'.
Taking the limit t — oo, we find V#(s) < vV™(s) foralls € S.

108 /152

Proof — 3. Taking the limit

- Iterating the inequality:
VA(s) < R(s) + wmgxzs/P(s’ls,a)V’”’(s’)

< R(S)—i—vmaaxZS/P(s'|S7a){ +wmaxz (s"|s", a7 (s)}

- Iterating the BOE:
VT(s) = R(s) + v mfxzs,P(5'|Sva)V”(s/)
= R(s) + vmaaxZS/P(s’b,a) [) 4+~ maxz P(s"|s", ')V (s)}

- Iterating t times:

Both right sides agree up to term of order ~'.
Taking the limit t — oo, we find V#(s) < vV™(s) foralls € S.

Since 7 is arbitrary, we conclude that = is optimal ‘

109 /152

Value Iteration

11/152

- How policy iteration works:

12 /152

- How policy iteration works:

It searches directly (and quite efficiently) through the
combinatorially large space of policies in the MDP.

13 /152

- How policy iteration works:

It searches directly (and quite efficiently) through the
combinatorially large space of policies in the MDP.

- Is there another way?

14 /152

- How policy iteration works:
It searches directly (and quite efficiently) through the
combinatorially large space of policies in the MDP.

- Is there another way?

Given an MDP = {S, A, P(s’[s, a),R(s),~}, recall how its
optimal policies and value functions are connected:

15/152

- How policy iteration works:

It searches directly (and quite efficiently) through the
combinatorially large space of policies in the MDP.

- Is there another way?

Given an MDP = {S, A, P(s’[s, a),R(s),~}, recall how its
optimal policies and value functions are connected:

7(s) = argmax {Q*(S,Cl)}

16 /152

- How policy iteration works:

It searches directly (and quite efficiently) through the
combinatorially large space of policies in the MDP.

- Is there another way?

Given an MDP = {S, A, P(s’[s, a),R(s),~}, recall how its
optimal policies and value functions are connected:

7(s) = argmax {Q*(S,Cl)}

= argmax [R(S) +7 Z P(s'[s,a) V*(Sl)}

17 /152

- How policy iteration works:
It searches directly (and quite efficiently) through the
combinatorially large space of policies in the MDP.

- Is there another way?
Given an MDP = {S, A, P(s’[s, a),R(s),~}, recall how its

optimal policies and value functions are connected:

7(s) = argmax {Q*(S,Cl)}

argmax {R(s) +v> P(s's,a) V*(s’)}

So if we can directly compute the optimal value function V*(s),

18 /152

- How policy iteration works:
It searches directly (and quite efficiently) through the
combinatorially large space of policies in the MDP.

- Is there another way?
Given an MDP = {S, A, P(s’[s, a),R(s),~}, recall how its

optimal policies and value functions are connected:

7(s) = argmax {Q*(S,Cl)}

argmax {R(s) +v> P(s's,a) V*(s’)}

So if we can directly compute the optimal value function V*(s),
then we can use it to derive an optimal policy 7*.

19 /152

Bellman optimality equation

120 /152

Bellman optimality equation

- Derivation:

121/152

Bellman optimality equation

- Derivation:

Vi(s) = max [Q*(s,a)]

122 /152

Bellman optimality equation

- Derivation:
Vi(s) = max [Q*(s,a)]

= max [R(S) + ’yz P(s'ls,a) V*(Sl)}

S/

123 /152

Bellman optimality equation

- Derivation:
VE(s) = max [Q*(S, CI)]
= max [R(s) + Z P(s'ls,a) V*(s’)}

- Solution?

124 /152

Bellman optimality equation

- Derivation:
Vi(s) = max [Q*(s,a)]

= max [R(S) + ’yz P(s'ls,a) V*(Sl)}

S/

- Solution?

Suppose we know the parameters {R(s), P(s'|s, a),~}.

— p— p—

125 /152

Bellman optimality equation

- Derivation:
Vi(s) = max [Q*(s,a)]

= max [R(S) + ’yz P(s'ls,a) V*(Sl)}

S/

- Solution?

Suppose we know the parameters {R(s), P(s'|s, a),~}.
Then the above gives us n equations for n unknowns:

126 /152

Bellman optimality equation

- Derivation:
Vi(s) = max [Q*(s,a)]

= max [R(S) + ’yz P(s'ls,a) V*(Sl)}

S/

- Solution?

Suppose we know the parameters {R(s), P(s'|s, a),~}.
Then the above gives us n equations for n unknowns:

Vi(s) = max |:R(S)+’)/ZP(S/’S,G) V*(s’)]

Sl

127 /152

Bellman optimality equation

- Derivation:
Vi(s) = max [Q*(s,a)]
= max [R(s) + ,y; P(s'|s,a) V*(s)}
- Solution?

Suppose we know the parameters {R(s), P(s'|s, a),~}.
Then the above gives us n equations for n unknowns:

V(s) = max [R(S)Jr'yZP(s’]s,a) V*(s’)]

But how to solve these nonlinear equations for V*(s)?

128 /152

Value iteration

129 /152

Value iteration

- Idea in a nutshell

130 /152

Value iteration

- Idea in a nutshell

Replace the equality sign in the Bellman optimality
equation by an assignment operation:

131/152

Value iteration

- Idea in a nutshell

Replace the equality sign in the Bellman optimality
equation by an assignment operation:

Vi(s) = max [R(S)+72P(S’|S,a)v*(s’)]

132 /152

Value iteration

- Idea in a nutshell

Replace the equality sign in the Bellman optimality
equation by an assignment operation:

V*(s) = max [R(S)+VZP(S'|S,G) V*(s’)]
Voew(s) ¢ max {R(s)wZP(sWs,'g) v01d<s'>}

/
L \

e P

133 /152

Value iteration

- Idea in a nutshell

Replace the equality sign in the Bellman optimality
equation by an assignment operation:

Vi(s) = max [R(S)+72P(S’|S,a)v*(s’)]
Vo) < g [R(5) 47 3 Al) Vo5

- Why this might work

134 /152

Value iteration

- Idea in a nutshell

Replace the equality sign in the Bellman optimality
equation by an assignment operation:

Vi(s) = max [R(S)+72P(S’|S,a)v*(s’)]
Vo) < g [R(5) 47 3 Al) Vo5

- Why this might work

The value function V*(s) is a fixed point of this iteration.

135/ 152

Value iteration

- Idea in a nutshell

Replace the equality sign in the Bellman optimality
equation by an assignment operation:

Vi(s) = max [R(S)+’yZP(S’|S,a)V*(S’)]
View(s) < max [R(s)+VZP(S’|S,G)V01d(s’)}

- Why this might work

The value function V*(s) is a fixed point of this iteration.
But does this iteration always converge to a valid solution?

136 /152

Algorithm for value iteration

137 /152

Algorithm for value iteration

1. Initialize: Vo(s) = 0foralls € S.

138 /152

Algorithm for value iteration

1. Initialize: Vo(s) = 0foralls € S.

2. Iterate until convergence:

139 /152

Algorithm for value iteration

1. Initialize: Vo(s) = 0foralls € S.

2. Iterate until convergence:

Visa(s) = max [R<S> 2 PEls.a) Vk(s')}

140 /152

Algorithm for value iteration

1. Initialize: Vo(s) = 0foralls € S.

2. Iterate until convergence:

Vipa(s) = max [R(s) - yZP(s’|s,a) Vk(s’)} foralls € S.
S/

141 /152

Algorithm for value iteration

1. Initialize: Vo(s) = 0foralls € S.

2. Iterate until convergence:

Vipa(s) = max [R(s) - yZP(s’|s,a) Vk(s’)} foralls € S.
S/

3. Solve for optimal policy:

142 /152

Algorithm for value iteration

1. Initialize: Vo(s) = 0foralls € S.

2. Iterate until convergence:
Vegr(s) = max [R(s) - yZP(s’|s,a) Vk(s’)} foralls € S.
a o
3. Solve for optimal policy:

Qu(s,a) = R(S)+7 Y P(s']s,a) Vi(s"),

S/

143 /152

Algorithm for value iteration

1. Initialize: Vo(s) = 0foralls € S.

2. Iterate until convergence:

Vegr(s) = max [R(s) - yZP(s’|s,a) Vk(s’)} foralls € S.

a
S/
3. Solve for optimal policy:

Qu(s,a) = R(S)+7 Y P(s']s,a) Vi(s"),

'>-Q 5/
7*(s) = lim argmaxQg(s,a).
k—o00 a
A =

144 [152

Value iteration (VI) versus policy iteration (PI)

145 /152

Value iteration (VI) versus policy iteration (PI)

- Compare and contrast:

146 [152

Value iteration (VI) versus policy iteration (PI)

- Compare and contrast:

Pl searches through the combinatorial space of policies.

147 [152

Value iteration (VI) versus policy iteration (PI)

- Compare and contrast:

Pl searches through the combinatorial space of policies.
VI searches through the continuous space of value
functions.

148 [152

Value iteration (VI) versus policy iteration (PI)

- Compare and contrast:

Pl searches through the combinatorial space of policies.
VI searches through the continuous space of value
functions.

- Convergence:

149 [152

Value iteration (VI) versus policy iteration (PI)

- Compare and contrast:

Pl searches through the combinatorial space of policies.
VI searches through the continuous space of value
functions.

- Convergence:

Pl converges in a finite number of steps.

150 / 152

Value iteration (VI) versus policy iteration (PI)

- Compare and contrast:

Pl searches through the combinatorial space of policies.
VI searches through the continuous space of value
functions.

- Convergence:

Pl converges in a finite number of steps.
VI converges asymptotically (in the limit).

151/152

That's all folks!

152 /152

